K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

a) \(\left\{{}\begin{matrix}3x-4y=-2\\2x+y=6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-4y=-2\\8x+4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\3x-4y=-2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

31 tháng 12 2022

a: =>3x-4y=-2 và 8x+4y=24

=>11x=22 và 2x+y=6

=>x=2 và y=6-2x=6-2*2=2

b: 2x-y=0 và 3x+y=4

=>5x=4 và y=2x

=>x=4/5 và y=8/5

c: x+3y=-2 và x-y=-1

=>4y=-1 và x=y-1

=>y=-1/4 và x=-1/4-1=-5/4

d: x+y=3 và 4x-3y=-2

=>4x+4y=12 và 4x-3y=-2

=>7y=14 và x+y=3

=>y=2 và x=1

NV
4 tháng 6 2019

\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)

\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)

\(\Leftrightarrow\left(3x-y+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)

Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải

3 tháng 12 2019

Akai Harumatth

3 tháng 12 2019

làm sao tag tên của tth vậy bạn

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

1 tháng 10 2019

Điều kiện x,y khác 0, x2+y2 khác 1                   (1)

Từ phương trình thứ 2 ta có x2+y2-1=\(\frac{2x}{y}\)+3 thay vào phương trình 1 ta được

\(\frac{3}{\frac{2x}{y}+3}+\frac{2y}{x}\)=1 <=>\(\frac{3y}{2x+3y}+\frac{2y}{x}=1\)<=>\(\frac{3xy+4xy+6y^2}{\left(2x+3y\right)x}=1\)

<=>6y2+7xy=2x2+3xy <=>6y2+4xy-2x2=0 <=>2(x+y)(3y-x)=0 <=>x+y=0 hoặc 3y-x=0 <=>x=-y hoặc x=3y

thay vào phương trình 2 ta được

với x=-y ta có y2+y2+2=4 ,=>y2=1 <=>y=1;x=-1 hoặc y=-1;x=1 (thỏa mãn (1))

x=3y ta có 9y2+y2-6=4 <=>y2=1 (ta có 2 nghiêm như trên)

vậy pt có 2 nghiệm x=1;y=-1 hoặc x=-1;y=1

1 tháng 10 2019

\(DK:x,y\ne0\)

Dat \(\left(x^2+y^2;\frac{x}{y}\right)=\left(t;v\right)\)

\(\Rightarrow\hept{\begin{cases}\frac{3}{t-1}+\frac{2}{v}=1\left(1\right)\\t-2v=4\left(2\right)\end{cases}}\)

\(DK:\hept{\begin{cases}t>0\\t\ne1\\v\ne0\end{cases}}\)

PT(2)\(\Leftrightarrow v=\frac{t-4}{2}\)

Thay vao PT(1) ta duoc:

\(\frac{3}{t-1}+\frac{2}{\frac{t-4}{2}}=1\left(DK:t\ne4\right)\)

\(\Leftrightarrow\frac{3\left(t-4\right)+4\left(t-1\right)}{\left(t-1\right)\left(t-4\right)}=\frac{\left(t-1\right)\left(t-4\right)}{\left(t-1\right)\left(t-4\right)}\)

\(\Rightarrow7t-16=t^2-5t+4\)

\(\Leftrightarrow t^2-12t+20=0\)

\(\Leftrightarrow\left(t-10\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=10\\t=2\end{cases}}\)

Xet \(t=10\)ta duoc:

\(v=3\)

Voi \(v=3\)

\(\Leftrightarrow\frac{x}{y}=3\)

\(\Leftrightarrow x=3y\)

Thay \(x=3y\)vao PT \(x^2+y^2-\frac{2x}{y}=4\)ta duoc:

\(\Leftrightarrow10y^2-10=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Xet \(t=2\)ta duoc:

\(v=-1\)

Voi \(v=-1\)

\(\Leftrightarrow\frac{x}{y}=-1\)

\(\Leftrightarrow x=-y\)

Thay \(x=-y\)vao PT \(x^2+y^2-\frac{2x}{y}=4\)ta duoc:

\(2x^2-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-1\\y=1\end{cases}}\)

Vay nghiem cua HPT la \(\left(1;3\right),\left(-1;-3\right),\left(1;-1\right),\left(-1;1\right)\)

13 tháng 5 2020

\(\hept{\begin{cases}x^2+x+2y=16\\5x^2-3y+5x=15\end{cases}}\)

\(< =>\hept{\begin{cases}5x^2+5x+10y=80\left(1\right)\\5x^2-3y+5x=15\left(2\right)\end{cases}}\)

Trừ pt 2 cho pt 1 ta có : \(-13y=-65< =>y=\frac{65}{13}=5\)

Thay \(y=5\)vào pt 2 ta có : \(5x^2-3y+5x=15\)

\(< =>5x^2+5x-15=15\)

Ta có : \(\Delta=5^2-4.5.\left(-15\right)=25+300=325\)

\(x_1=\frac{-5+\sqrt{325}}{10}=\frac{-5+5\sqrt{13}}{10}=\frac{5\left(-1+\sqrt{13}\right)}{5.2}=\frac{-1+\sqrt{13}}{2}\)

\(x_2=\frac{-5-\sqrt{325}}{10}=\frac{-5-5\sqrt{13}}{10}=\frac{5\left(-1-\sqrt{13}\right)}{5.2}=\frac{-1-\sqrt{13}}{2}\)

Vậy ...

Oư Quân :)) tớ ko hỉu nên ms hỏi cậu nè : 

sao Trừ pt 2 đi 

Từ : \(5x^2+5x+10y=80\)

Mà suy ra đc : \(-13y=-65\)

oh my god :>> hack não ???