Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y+1\right)\left(xy+1\right)=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
\(\Rightarrow\left(x^2-y+1\right)\left(xy+1\right)-\left(x^2-y\right)^2-\left(xy+1\right)=0\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2-y\right)-\left(x^2-y\right)^2=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=x^2\\xy+1=x^2-y\end{matrix}\right.\) thay xuống pt dưới:
- Với \(y=x^2\) thay xuống pt dưới \(\Rightarrow x^3=1\)
- Với \(xy+1=x^2-y\) thay xuống dưới:
\(\left\{{}\begin{matrix}xy+1=x^2-y\\2\left(xy+1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy+1=x^2-y\\xy=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0;y=-1\\y=0;x^2=1\end{matrix}\right.\)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x^2+y^2\right)+2xy+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=20\\\left(x-y\right)+\left(x+y\right)+\dfrac{1}{x-y}=5\end{matrix}\right.\)
Đặt \(a=x+y;b=x-y\)
\(\Rightarrow\left\{{}\begin{matrix}2a^2+b^2+\dfrac{1}{b^2}=20\\a+b+\dfrac{1}{b}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+\left(b+\dfrac{1}{b}\right)^2=22\\b+\dfrac{1}{b}=5-a\end{matrix}\right.\)
\(\Rightarrow2a^2+\left(a-5\right)^2=22\)
\(\)Đến đây thì dễ rồi tự làm nhé
a) hpt \(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=11\\\left(x+y\right)^2-2xy-\left(x+y\right)=8\end{matrix}\right.\)
Đặt S=x+y; P =xy, ta có hệ :
\(\left\{{}\begin{matrix}S+P=11\\S^2-S-2P=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\S^2-S-2\left(11-S\right)=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\S^2+S-30=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=11-S\\\left[{}\begin{matrix}S=5\\S=-6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=11-\left(x+y\right)\\\left[{}\begin{matrix}x+y=5\\x+y=-6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\curlyvee\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\text{hệ vô nghiệm}\end{matrix}\right.\)
Vậy...
\(\left\{ \begin{array}{l} {x^2} + {\left( {y + 1} \right)^2} = xy + x + 1\\ 2{x^3} = x + y + 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {\left( {y - 1} \right)^2} - x\left( {y + 1} \right) = 1\\ 2{x^3} = x + y + 1 \end{array} \right.\left( * \right)\)Đặt $t=y+1$, ta có \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {t^2} - xt = 1\\ 2{x^3} = \left( {x - t} \right)\left( {{x^2} + {t^2} - xt} \right) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {t^2} - xt = 1\\ x = t \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = t = 1\\ x = t - 1 \end{array} \right.\)
Vậy nghiệm của hệ phương trình $(1;0);(-1;-2)$
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=12\\\left(x-1\right)^2+\left(y-2\right)^2=25\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-1=a\\y-2=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=12\\a^2+b^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{12}{a}\\a^2+\dfrac{144}{a^2}=25\end{matrix}\right.\) \(\Leftrightarrow a^4-25a^2+144=0\Rightarrow\left[{}\begin{matrix}a^2=16\\a^2=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=4\Rightarrow b=3\\a=-4\Rightarrow b=-3\\a=3\Rightarrow b=4\\a=-3\Rightarrow b=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5;y=5\\x=-3;y=-1\\x=4;y=6\\x=-2;y=-2\end{matrix}\right.\)
Hệ đã cho có 4 cặp nghiệm \(\left(x;y\right)=\left(5;5\right);\left(-3;-1\right);\left(4;6\right);\left(-2;-2\right)\)
cảm on bạn nhiều nha