\(\left\{{}\begin{matrix}y^2\sqrt{2x-1}+\sqrt{3}=5y^2-\sqrt{6x-3}\\2y^4\left(5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1a:

Ta thấy vế trái là số tự nhiên với mọi $x,y\in\mathbb{N}^*$. Do đó $\sqrt{9x^2+16x+32}\in\mathbb{N}^*$

Điều này xảy ra khi \(9x^2+16x+32\) là số chính phương.

Đặt \(9x^2+16x+32=t^2(t\in\mathbb{N}^*)\)

\(\Leftrightarrow 81x^2+144x+288=9t^2\)

\(\Leftrightarrow (9x+8)^2+224=(3t)^2\Leftrightarrow (3t-9x-8)(3t+9x+8)=224\)

Hiển nhiên $3t+9x+8>0; 3t+9x+8>3t-9x-8$ với mọi $x,t\in\mathbb{N}^*$ và $3t+9x+8; 3t-9x-8$ cùng tính chẵn lẻ.

Do đó \((3t+9x+8; 3t-9x-8)=(16;14); (28;8); (56;4); (112;2)\)

Thử các TH trên ta thu được $x=2$ là kết quả duy nhất thỏa mãn

Thay vào PT ban đầu suy ra $y=\frac{-7}{4}$ (vô lý)

Do đó không tồn tại $x,y$ thỏa mãn.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1b:

ĐKXĐ: \(x\geq \frac{-1}{3}\)

PT \(\Leftrightarrow 4x^3+5x^2+3x+1-\sqrt{3x+1}=0\)

\(\Leftrightarrow 4x^3+5x^2+3x-\frac{3x}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x\left(4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}=0(*)\end{matrix}\right.\)

Xét $(*)$

\(\Leftrightarrow 4x^2+x+4x+1+2-\frac{3}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x(4x+1)+(4x+1)+\frac{2\sqrt{3x+1}-1}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow (4x+1)(x+1)+\frac{3(4x+1)}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}=0\)

\(\Leftrightarrow (4x+1)\left[(x+1)+\frac{3}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}\right]=0\)

Với mọi $x\geq \frac{-1}{3}$ dễ thấy biểu thức trong ngoặc vuông luôn dương. Do đó $4x+1=0\Rightarrow x=\frac{-1}{4}$ (thử lại thấy t/m)

Vậy \(x=0\) hoặc \(x=-\frac{1}{4}\)

7 tháng 5 2020

\(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}=5y^2-\sqrt{6x-3}\left(1\right)\\2y^4\left(5x^2-17x+6\right)=6-15x\left(2\right)\end{cases}}\)

\(ĐKXĐ:x\ge\frac{1}{2}\)

\(\left(2\right)\Leftrightarrow2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\)\(\Leftrightarrow\left(5x-2\right)\left[2y^4\left(x-3\right)+3\right]=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(KTMĐK\right)\\2y^4\left(x-3\right)+3=0\end{cases}}\)

Với \(2y^4\left(x-3\right)+3=0\)thì ta được \(y^4=\frac{3}{6-2x}\Rightarrow y^2=\sqrt{\frac{3}{6-2x}}\)(3)

Thay vào (1), ta được \(\sqrt{\frac{3}{6-2x}}.\sqrt{2x-1}+\sqrt{3}=5\sqrt{\frac{3}{6-2x}}-\sqrt{6x-3}\)

\(\Leftrightarrow\sqrt{6x-3}+\sqrt{3\left(6-2x\right)}=5\sqrt{3}-\sqrt{\left(6x-3\right)\left(6-2x\right)}\)

Đặt \(u=\sqrt{6x-3};v=\sqrt{3\left(6-2x\right)}\left(u,v\ge0\right)\).Khi đó ta được hệ phương trình:

\(\hept{\begin{cases}u^2+v^2=15\\u+v=5\sqrt{3}-\frac{uv}{\sqrt{3}}\end{cases}}\Leftrightarrow\hept{\begin{cases}u^2+v^2=15\\\sqrt{3}\left(u+v\right)+uv=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3\left(u+v\right)^2=45+6uv\\\sqrt{3}\left(u+v\right)=15-uv\end{cases}}\)

Từ hệ trên suy ra được \(45+6uv=\left(15-uv\right)^2\Leftrightarrow\left(uv\right)^2-36uv+180=0\)

\(\Leftrightarrow\left(uv-6\right)\left(uv-30\right)=0\Leftrightarrow\orbr{\begin{cases}uv=6\\uv=30\end{cases}}\)(\(uv\ge0\))

+) Với uv = 30 ta được: \(u+v=-5\sqrt{3}\)(loại)

+) Với uv = 6 ta được: \(u+v=3\sqrt{3}\)suy ra u, v là hai nghiệm của phương trình \(k^2-3\sqrt{3}k+6=0\)

Giải phương trình bậc hai trên ta thu được hai nghiệm \(2\sqrt{3}\)và \(\sqrt{3}\)

Suy ra \(u=2\sqrt{3};v=\sqrt{3}\)hoặc \(u=\sqrt{3};v=2\sqrt{3}\)

* Với \(u=2\sqrt{3};v=\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=2\sqrt{3}\\\sqrt{3\left(6-2x\right)}=\sqrt{3}\end{cases}}\Rightarrow x=\frac{5}{2}\)

* Với \(u=\sqrt{3};v=2\sqrt{3}\)thì \(\hept{\begin{cases}\sqrt{6x-3}=\sqrt{3}\\\sqrt{3\left(6-2x\right)}=2\sqrt{3}\end{cases}}\Rightarrow x=1\)

+) Thay \(x=\frac{5}{2}\)vào (3) tìm được \(y=\pm\sqrt[4]{3}\)

+) Thay x = 1 vào (3) tìm được \(y=\pm\sqrt{\frac{\sqrt{3}}{2}}\)

Vậy hệ phương trình có 4 nghiệm (x;y) là \(\left\{\left(1;\sqrt{\frac{\sqrt{3}}{2}}\right);\left(1;-\sqrt{\frac{\sqrt{3}}{2}}\right);\left(\frac{5}{2};\sqrt[4]{3}\right);\left(\frac{5}{2};-\sqrt[4]{3}\right)\right\}\)

7 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{2}\)biến đổi phương trình thứ hai ta được

\(2y^4\left(5x-2\right)\left(x-3\right)=3\left(2-5x\right)\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\left(loai\right)\\2xy^4+3=6y^4\end{cases}}\)

Ta đưa về hệ về pt \(\hept{\begin{cases}y^2\sqrt{2x-1}+\sqrt{3}\cdot\sqrt{2x-1}=5y^2-\sqrt{3}\\2xy^4+3=6y^4\end{cases}}\)

Nhận thấy y=0 không là nghiệm của hệ pt nên chia cả 2 vế của pt thứ nhất cho y2 và pt thứ hai cho y4 có:

\(\hept{\begin{cases}\sqrt{2x-1}+\frac{\sqrt{3}}{y^2}\sqrt{2x-1}=5-\frac{\sqrt{3}}{y^2}\\2x-1+\frac{3}{y^4}=5\end{cases}}\)

Đặt \(a=\sqrt{2x-1};b=\frac{\sqrt{3}}{y^2}\left(a\ge0;b\ge0\right)\)

Ta có hệ pt \(\hept{\begin{cases}a+ab+b=5\\a^2+b^2=5\end{cases}}\)

Ta được \(a=\frac{5-b}{1+b}\)thay vào phương trình thứ hai ta có:

\(\left(\frac{5-b}{1+b}\right)^2+b^2=5\Leftrightarrow b^4+2b^3-3b^2-20b+20=0\Leftrightarrow\left(b-1\right)\left(b^2+5b+10\right)=0\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\b=2\end{cases}}\)

Với \(\hept{\begin{cases}a=2\\b=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\pm\sqrt[4]{3}\end{cases}}}\)

Với \(\hept{\begin{cases}a=1\\b=2\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\end{cases}}}\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{5}{2};\pm\sqrt[4]{3}\right);\left(1;\pm\frac{\sqrt[4]{3}}{\sqrt{2}}\right)\right\}\)

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

23 tháng 3 2017

Câu 1:

Đặt \(3x-16y-24=k\left(k\in N\right)\) khi đó:

\(\sqrt{9x^2+16x+32}=k\Rightarrow9x^2+16x+32=k^2\)

\(\Rightarrow9\left(x+\dfrac{8}{9}\right)^2+\dfrac{224}{9}=k^2\)

\(\Rightarrow\dfrac{1}{9}\left(\left(9x+8\right)^2-9k^2\right)=-\dfrac{224}{9}\)

\(\Rightarrow\left(9x+8+3k\right)\left(9x+8-3k\right)=-224\)

tự giải nốt

23 tháng 3 2017

Câu 2:

\(4x^3+5x^2+1=\sqrt{3x+1}-3x\)

\(\Leftrightarrow4x^3+5x^2+3x+1=\sqrt{3x+1}\)

\(\Leftrightarrow 16x^6+40x^5+49x^4+38x^3+19x^2+6x+1=3x+1\)

\(\Leftrightarow x(4x+1)(4x^4+9x^3+10x^2+7x+3)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{4}\end{matrix}\right.\)

1 tháng 1 2020

a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm

ĐK: \(x\le3\)

\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)

\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)

\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)

\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)

\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)

\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)

Vậy...

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm

Mn giúp e vs ạ! thanks!

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

20 tháng 12 2018

a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)

10 tháng 12 2022

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)