Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
a/ \(\left\{{}\begin{matrix}x+2y=4\\x^2+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(4-2y\right)^2+4y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\4y^2-12y+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left(y-1\right)\left(y-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\\left[{}\begin{matrix}y-1=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(2;1\right)\) hoặc \(\left(x;y\right)=\left(0;2\right)\)
1/Liên hợp đi cho nó nhẹ:D
ĐKXĐ: \(x\ge16\)
PT \(\Leftrightarrow\sqrt{x+24}-7+\sqrt{x-16}-3=0\)
\(\Leftrightarrow\frac{x-25}{\sqrt{x+24}+7}+\frac{x-25}{\sqrt{x-16}+3}=0\)
\(\Leftrightarrow\left(x-25\right)\left(\frac{1}{\sqrt{x+24}+7}+\frac{1}{\sqrt{x-16}+3}\right)=0\)
\(\Leftrightarrow x=25\)
ĐKXĐ: ...
\(x^2+3x-4-\left(x-1\right)\sqrt{y+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)-\left(x-1\right)\sqrt{y+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4-\sqrt{y+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+4=\sqrt{y-2}\end{matrix}\right.\)
- Với \(x=1\Rightarrow\sqrt{22}+\sqrt{10-y}=3\)
\(\Leftrightarrow\sqrt{10-y}=3-\sqrt{22}< 0\) (vô nghiệm)
- Với \(x+4=\sqrt{y-2}\) (\(x\ge-4\))
Thay xuống dưới:
\(\sqrt{\left(x+4\right)^2-3}+\sqrt{10-y}=3\)
\(\Leftrightarrow\sqrt{y-2-3}+\sqrt{10-y}=3\)
\(\Leftrightarrow\sqrt{y-5}+\sqrt{10-y}=3\)
\(\Leftrightarrow5+2\sqrt{-y^2+15y-50}=9\)
\(\Leftrightarrow\sqrt{-y^2+15y-50}=2\)
\(\Leftrightarrow y^2-15y+54=0\Rightarrow\left[{}\begin{matrix}y=9\Rightarrow x=\sqrt{7}-4\\y=6\Rightarrow x=-2\end{matrix}\right.\)
`x+y=8<=>x=8-y`
`=>\sqrt{y^2-16y+64+8}+\sqrt{y^2+9}=10`
`<=>\sqrt{y^2-16y+72}=10-\sqrt{y^2+9}`
ĐK để bp 2 vế:`\sqrt{y^2+9}<=10<=>y^2<=91<=>`$\left[ \begin{array}{l}x \geq \sqrt{91}\\x \leq -\sqrt{91}\end{array} \right.$
`<=>y^2-16y+72=100+y^2+9-20\sqrt{y^2+9}`
`<=>20\sqrt{y^2+9}=16y+37`
ĐKBP:`y>=-37/16`
`<=>400(y^2+9)=196y^2+1369+1184y`
`<=>204y^2-1184y+2231=0`
`<=>y^2-296/51y+2231/204=0`
`\Delta≈(296/51)^2-2231/51`
`≈33,68-4311
`≈-10<0`
`=>` HPT vô nghiệm.
\(\sqrt{x^2+9}+\sqrt{y^2+9}\ge\sqrt{\left(x+y\right)^2+\left(2\sqrt{9}\right)^2}=10\)
Dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(\Rightarrow x=y=4\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(4;4\right)\)