\(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2-8y+4=8x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

mình không ghi lại đề nhé với lại bạn xem câu 1 chỗ -2x + 5 hay 5x ạ ?\(1.\left\{{}\begin{matrix}-6x+15y=15\\6x-8y=9\end{matrix}\right. }< =>\left\{{}\begin{matrix}7y=24\\6x-8y=9\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{24}{7}\\6x-8\left(\dfrac{24}{7}\right)=9\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{24}{7}\\x=\dfrac{85}{14}\end{matrix}\right.\)

12 tháng 1 2018

Hỏi đáp ToánHỏi đáp Toán

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

NV
23 tháng 2 2019

a/ Trừ vế cho vế ta được: \(x^2-y^2=xy^2-x^2y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y+xy\right)=0\)

TH1: \(x=y\) thay vào pt đầu:

\(x^2=x^3+2\Leftrightarrow x^3-x^2+2=0\Rightarrow x=-1;y=-1\)

TH2: \(x+y+xy=0\Leftrightarrow y\left(x+1\right)=-x\Rightarrow y=\dfrac{-x}{x+1}\) (\(x=-1\) không phải nghiệm)

Thay vào pt đầu: \(x^2=\dfrac{x^3}{\left(x+1\right)^2}+2\Leftrightarrow\left(x^2+x\right)^2=x^3+2\left(x+1\right)^2\)

\(\Leftrightarrow x^4+x^3-x^2-4x-2=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\Rightarrow y=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\Rightarrow y=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

NV
23 tháng 2 2019

b/ Trừ vế cho vế: \(3x^2-3y^2=7\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(3x+3y\right)=7\left(x-y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y-7\right)=0\)

TH1: \(x-y=0\Leftrightarrow x=y\) thay vào pt đầu:

\(x^2-2x^2=7x\Leftrightarrow x^2+7x=0\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=-7\end{matrix}\right.\)

TH2: \(3x+3y=7\Leftrightarrow y=\dfrac{7-3x}{3}=\dfrac{7}{3}-x\) thay vào pt đầu:

\(x^2-2\left(\dfrac{7}{3}-x\right)^2=7x\Leftrightarrow x^2-\dfrac{7}{3}x+\dfrac{98}{9}=0\) (vô nghiệm)

3 tháng 3 2019

1) Cộng vế theo vế ta được

\(2x^2+3xy+y^2-7x-5y+6=0\)

\((x+y-2)(2x+y-3)=0\)

Thay vào phương trình giải bình thường

2) Nhận thấy \(y=0\)không là nghiệm của hpt trên.Vì thế nhân cả 2 vế của (2) cho 18y ta được:\(72x^2y^{2}+108xy=18y^3\) (3)
Lấy (1) trừ (3) ta được:\(8x^3y^3-72x^2y^{2}-108xy+27=0 \)
Đến đây đặt \(a=xy\) giải bình thường

27 tháng 12 2019

bạn có cách nào để phân tích đa tử nhanh như ở câu a k ạ

23 tháng 8 2018

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

23 tháng 8 2018

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !