\(\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\)bằng pp thế

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Ta có : x - y = 2 => x=2+y (1)

 Mà 5x-3y=10 (2)

Thay (1) vào (2) ta dc : 5(2+y) - 3y =10

                                 => y = 0

                                 => x =0+2=2

9 tháng 11 2019

\(5x-3y=10\)

\(\Leftrightarrow3\left(x-y\right)+2x=10\)

\(\Leftrightarrow6+2x=10\)

\(\Leftrightarrow x=2\)

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

26 tháng 4 2020

\(\hept{\begin{cases}x-y=m\left(1\right)\Rightarrow y=x-m\\2x+y=4\left(2\right)\end{cases}}\)

Thay vào (2) => 2x+(x-m)=4

\(\Leftrightarrow\hept{\begin{cases}y=x-m\\3x-m-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-m\\x=\frac{4+m}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4+m}{3}\\y=\frac{4-m}{3}-m=\frac{4-4m}{3}\end{cases}}}\)

27 tháng 4 2020

\(\hept{\begin{cases}x-y=m\\2x+y=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y+2x+y=m+4\\2x+y=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3x=m+4\\2x+y=4\end{cases}}\)                                                                                                                                                                               \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{m+4}{3}\\2.\frac{m+4}{3}+y=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+4}{3}\\\frac{2m+8}{3}+y=4\end{cases}}\)                                                                                                                                                                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{m+4}{3}\\y=\frac{4-2m}{3}\end{cases}}\)                                      Vậy hệ pt có nghiệm duy nhất là: \(\left(x;y\right)=\left(\frac{m+4}{3};\frac{4-2m}{3}\right)\)    

10 tháng 12 2017

ta lấy phương trình (1) trừ phương trình (2) ta được :

     x  +  y   -  xy  =   1

  \(\Leftrightarrow\)x  +  y   -  xy  - 1  =  0 

\(\Leftrightarrow\)x  (    1   -   y  )   -  (1  -  y)  =  0

\(\Leftrightarrow\)(1  -   y )(x -  1)  =  0

\(\Leftrightarrow\)\(\orbr{\begin{cases}1-y=0\\x-1=0\end{cases}}\)

Với \(1-y=0\Rightarrow y=1\Rightarrow x^2+1+x=7\Rightarrow x^2+x-6=0\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Với \(x-1=0\Rightarrow x=1\Rightarrow1+y^2+y=7\Rightarrow y^2+y-6=0\Rightarrow\orbr{\begin{cases}y=-3\\y=2\end{cases}}\)

Vậy ta có các cặp nghiệm (x ; y) tương ứng là  (1; -3) , (1; 2) ; (2; 1) , (-3; 1)

24 tháng 12 2018

Từ x – y = 3 ⇒ x = 3 + y.
Thay x = 3 + y vào phương trình 3x – 4y = 2.
Ta được 3(3 + y) – 4y = 2 ⇔ 9 + 3y – 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).

24 tháng 12 2018

Tặng nick của bạn cho mình đi!

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé