Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
a)Tôn trọng bản quyền nè Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến (đề ko cho a,b,c dương nên ko dám manh động :)))
b)Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y+1}{8}+\dfrac{z+1}{8}\)
\(\ge3\sqrt[3]{\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\cdot\dfrac{y+1}{8}\cdot\dfrac{z+1}{8}}=\dfrac{3x}{4}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(VT+\dfrac{2\left(x+y+z+3\right)}{8}\ge\dfrac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{xyz}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{xyz}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)
Xảy ra khi \(x=y=z=1\)
Ta có: \(\left\{{}\begin{matrix}x^2+4y^2=5\left(1\right)\\4xy+x+2y=7\left(2\right)\end{matrix}\right.\)
Cộng (1) với (2) ta được:
\(x^2+4xy+4y^2+x+2y=12\)
<=> \(\left(x+2y\right)^2+\left(x+2y\right)=12\) (*)
Đặt \(x+2y=a\) => (*) trở thành:
\(a^2+a-12=0\)
<=> \(\left(a^2-3a\right)+\left(4a-12\right)=0\)
<=> \(a\left(a-3\right)+4\left(a-3\right)=0\)
<=> \(\left(a+4\right)\left(a-3\right)=0\)
<=> \(\left[{}\begin{matrix}a=-4\\a=3\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+2y=-4\\x+2y=3\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-4-2y\left(3\right)\\x=3-2y\left(4\right)\end{matrix}\right.\)
Xét TH: x = - 4 - 2y ta được: 4xy -4 = 7
=> 4xy = 11
=> 4 ( -4 - 2y)y = 11
=> -16y - 8y2 - 11 = 0
=> \(8\left(y^2+2y+1\right)+3=0\)=> PT vô nghiệm
Xét TH: x = 3- 2y ta được : 4xy + 3 = 7
=> 4 ( 3-2y)y = 4
<=> 3y - 2y2 - 1 = 0
<=> 2y(y - 1) -( y -1 )= 0
<=> \(\left[{}\begin{matrix}y=1\\y=\dfrac{1}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy .................................
\(pt\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
Do \(x,y\) nguyên nên ta có:
\(0\le x^6\le320\)
\(\Leftrightarrow0\le x^2\le7\Rightarrow x^2=0;1;4\)
Thử các giá trị của x vào ta tìm được
\(\left(x;y\right)=\left(2;24\right);\left(2;-8\right);\left(-2;8\right);\left(-2;-24\right)\)
Vậy có 4 cặp số nguyê \(x;y\) thỏa mãn
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)