![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện x,y khác 0, x2+y2 khác 1 (1)
Từ phương trình thứ 2 ta có x2+y2-1=\(\frac{2x}{y}\)+3 thay vào phương trình 1 ta được
\(\frac{3}{\frac{2x}{y}+3}+\frac{2y}{x}\)=1 <=>\(\frac{3y}{2x+3y}+\frac{2y}{x}=1\)<=>\(\frac{3xy+4xy+6y^2}{\left(2x+3y\right)x}=1\)
<=>6y2+7xy=2x2+3xy <=>6y2+4xy-2x2=0 <=>2(x+y)(3y-x)=0 <=>x+y=0 hoặc 3y-x=0 <=>x=-y hoặc x=3y
thay vào phương trình 2 ta được
với x=-y ta có y2+y2+2=4 ,=>y2=1 <=>y=1;x=-1 hoặc y=-1;x=1 (thỏa mãn (1))
x=3y ta có 9y2+y2-6=4 <=>y2=1 (ta có 2 nghiêm như trên)
vậy pt có 2 nghiệm x=1;y=-1 hoặc x=-1;y=1
\(DK:x,y\ne0\)
Dat \(\left(x^2+y^2;\frac{x}{y}\right)=\left(t;v\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{3}{t-1}+\frac{2}{v}=1\left(1\right)\\t-2v=4\left(2\right)\end{cases}}\)
\(DK:\hept{\begin{cases}t>0\\t\ne1\\v\ne0\end{cases}}\)
PT(2)\(\Leftrightarrow v=\frac{t-4}{2}\)
Thay vao PT(1) ta duoc:
\(\frac{3}{t-1}+\frac{2}{\frac{t-4}{2}}=1\left(DK:t\ne4\right)\)
\(\Leftrightarrow\frac{3\left(t-4\right)+4\left(t-1\right)}{\left(t-1\right)\left(t-4\right)}=\frac{\left(t-1\right)\left(t-4\right)}{\left(t-1\right)\left(t-4\right)}\)
\(\Rightarrow7t-16=t^2-5t+4\)
\(\Leftrightarrow t^2-12t+20=0\)
\(\Leftrightarrow\left(t-10\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=10\\t=2\end{cases}}\)
Xet \(t=10\)ta duoc:
\(v=3\)
Voi \(v=3\)
\(\Leftrightarrow\frac{x}{y}=3\)
\(\Leftrightarrow x=3y\)
Thay \(x=3y\)vao PT \(x^2+y^2-\frac{2x}{y}=4\)ta duoc:
\(\Leftrightarrow10y^2-10=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Xet \(t=2\)ta duoc:
\(v=-1\)
Voi \(v=-1\)
\(\Leftrightarrow\frac{x}{y}=-1\)
\(\Leftrightarrow x=-y\)
Thay \(x=-y\)vao PT \(x^2+y^2-\frac{2x}{y}=4\)ta duoc:
\(2x^2-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-1\\y=1\end{cases}}\)
Vay nghiem cua HPT la \(\left(1;3\right),\left(-1;-3\right),\left(1;-1\right),\left(-1;1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
EZ game
Xét x=y=0
Xét x và y khác 0
Cộng từng vế hai phương trình
Đánh giá VP >= VT
Giải HPT :
\(\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2y+\frac{1}{x}=\frac{3}{y}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)
Do các vế của 2 pt đều khác 0, nhân vế với vế:
\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)
\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)
Chia 2 vế của pt cho \(y^2\) :
\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)
Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)
\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)
b/ ĐKXĐ:
Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)
Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D
Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,
@tth_new, @Nguyễn Việt Lâm, @Akai Haruma
Giúp em với ạ! Cần gấp lắm ạ! Thanks!
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
http://olm.vn/hoi-dap/question/140507.html