Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>0; x ≠ 1
P = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
= \(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}}\)
= \(\dfrac{4x\sqrt{x}}{\sqrt{x}}\)= 4x
Vậy P = 4x với x > 0; x ≠ 1
\(2^a3^b=\frac{4}{3}\Leftrightarrow2^a.3^{b+1}=4\Leftrightarrow\frac{2^a3^{b+1}}{2^2}=1\Leftrightarrow2^{a-2}3^{b+1}=1.\)
vì 2 và ba nguyên tố cùng nhau nên : \(2^{a-2}.3^{b+1}=1\Leftrightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}.}}\)
HOẶC
\(\left(2^{a-2}.3^{b+1}=1\Leftrightarrow2^{a-2}.3^{b+1}=2^0.3^0\Rightarrow\hept{\begin{cases}a-2=0\\b+1=0\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-1\end{cases}}.\right)\)
lớp 9 thì mình dùng cách lớp 9
\(\sqrt{x+2\sqrt{x}-1}=2\left(đk:x\ge1\right)\)
\(< =>x+2\sqrt{x}-1=4\)(bình phương 2 vế)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\)(*)
\(< =>t^2+2t-5=0\)
\(\Delta=2^2-4.\left(-5\right)=4+20=24\)
\(\orbr{\begin{cases}t_1=\frac{-2+2\sqrt{6}}{2}=-1+\sqrt{6}\left(tm\right)\\t_2=\frac{-2-2\sqrt{6}}{2}=-1-\sqrt{6}\left(ktm\right)\end{cases}}\)
Khi đó thế vào * ta được :
\(\sqrt{x}=\sqrt{6}-1< =>x=7-2\sqrt{6}\left(tmđk\right)\)
Vậy nghiệm của phương trình trên là \(7-2\sqrt{6}\)
ĐK: \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}=2\)
<=> \(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)
<=> \(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
<=> \(\sqrt{x-1}+1=2\)
<=> \(\sqrt{x-1}=1\)
<=> x - 1 = 1
<=> x = 2 thỏa mãn
\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{2x-1-2\sqrt{2x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{2x-1}-1=2\)
\(\Leftrightarrow\sqrt{2x-1}=3\)
\(\Leftrightarrow2x-1=9\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\left(TM\right)\)
Vậy PT có nghiệm là \(x=5\)
Bài mấy vậy bạn
153086 nhé