Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:\hept{\begin{cases}x\ne9\\x\ge0\end{cases}}\)
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(\Leftrightarrow B=\frac{3+\sqrt{x}}{9-x}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{9-x}+\frac{x+9}{9-x}\)
\(\Leftrightarrow B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{9-x}\)
\(\Leftrightarrow B=\frac{4\sqrt{x}+12}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(\Leftrightarrow B=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{4}{3-\sqrt{x}}\)
mk giải 1 bài lm mẩu nha .
+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)
vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)
vậy giá trị nhỏ nhất của \(A\) là \(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)
mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :
lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :
DƯƠNG PHAN KHÁNH DƯƠNG
ĐKXĐ : \(x\ge0\) và \(x\ne\dfrac{1}{9}\)
\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}=\dfrac{6}{5}\)
\(\Leftrightarrow\dfrac{5\sqrt{x}\left(\sqrt{x}+1\right)}{5\left(3\sqrt{x}-1\right)}=\dfrac{6\left(3\sqrt{x}-1\right)}{5\left(3\sqrt{x}-1\right)}\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)
\(\Leftrightarrow5x+5\sqrt{x}-18\sqrt{x}+6=0\)
\(\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow5x-10\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(5\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\5\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{9}{25}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{9}{25};4\right\}\)
Học tốt !
=(√x -2)*(√x -3) / (√x -3)
=√x -2