Giả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>ac-a^2+bc-ab=ac-bc+a^2-ab

=>-2a^2+2bc=0

=>a^2-bc=0

=>a^2=bc

=>a/b=c/a

=>ĐPCM

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét \(\Delta ABC\) và \(\Delta MNP\) có:

\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)

Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)

Xét \(\Delta DEF\) và \(\Delta GHK\) có:

\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)

Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.

+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.

+ Tháng 4 có nhiệt độ trung bình cao nhất.

+ Tháng 12 có nhiệt độ trung bình thấp nhất.

+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.

+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.

+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







29 tháng 2 2024

a)35/50

b)24/42

c)275/250

d)21/30

AH
Akai Haruma
Giáo viên
31 tháng 1 2024

Lời giải:

Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$

Hình 1: Hình không rõ ràng. Bạn xem lại.

Hình 2: $x+x+120^0=180^0$

$2x+120^0=180^0$

$2x=60^0$

$x=60^0:2=30^0$

Hình 3:

$2y+y+90^0=180^0$

$3y=180^0-90^0=90^0$

$y=90^0:3=30^0$

 

11 tháng 1 2024

Đổi 30 phút = 0,5 giờ

    Quãng sông từ A đến B dài là:

        \(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)

Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)

29 tháng 2 2024

30=0,5 giờ

ta có biểu thức:

0,5x+1y