Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a. Thay \(m=-2\) vào pt đề cho ta được pt:
\(x^2-6x-7=0\left(2\right)\)
Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)
b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)
Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)
\(\Leftrightarrow m\le6\)
Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)
Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)
Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:
\(6\left(2m-3\right)=24\)
\(\Rightarrow2m-3=4\)
\(\Rightarrow2m=7\)
\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)
Vậy .............
b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)
Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)
Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)
Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)
\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)
\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)
Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)
ĐĂT \(A=!x_1-x_2!\)
\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)
\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)
\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)
\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm
Vậy m=4 là giá trị cần tìm
\(\Leftrightarrow4A^2=m^2-2m+9\)
\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)
\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)
\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)
Vậy \(m=1\)là giá trị cần tìm
1) \(\Delta'=1^2-\left(m-1\right)=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Khi đó \(x_1=1+\sqrt{2-m};x_2=1-\sqrt{2-m}\)
TH1: \(2\left(1+\sqrt{2-m}\right)-\left(1-\sqrt{2-m}\right)=7\Leftrightarrow1+3\sqrt{2-m}=7\)
\(\Leftrightarrow\sqrt{2-m}=2\Leftrightarrow2-m=4\Rightarrow m=-2\left(tm\right)\)
TH2: \(2\left(1-\sqrt{2-m}\right)-\left(1+\sqrt{2-m}\right)=7\Leftrightarrow1-3\sqrt{2-m}=7\) (VÔ LÝ)
Vậy m = - 2.
2) \(P=\frac{x^4+3x^2+1}{x^2+1}=\frac{\left(x^4+2x^2+1\right)+\left(x^2+1\right)+2}{x^2+1}=\left(x^2+1\right)+\frac{2}{x^2+1}+1\)
Vì \(x^2+1\ge1\), áp dụng bđt Cô si ta có:
\(\left(x^2+1\right)+\frac{2}{x^2+1}\ge2\sqrt{\left(x^2+1\right).\frac{2}{x^2+1}}=2\sqrt{2}\)
Vậy \(P\ge2\sqrt{2}+1\)
Dấu bằng xảy ra khi
\(x^2+1=\frac{2}{x^2+1}\Leftrightarrow x^2+1=\sqrt{2}\Rightarrow x^2=\sqrt{2}-1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{2}-1}\\x=-\sqrt{\sqrt{2}-1}\end{cases}}\)