K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

7 tháng 9 2017

20

Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:

Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n

Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0

Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0

Ta có:

f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12

Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.

7 tháng 9 2017

19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:


nên diện tích của hình chữ nhật sẽ là:

không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH

20 tháng 8 2016

limdim

20 tháng 8 2016

lolangBiện luận số số nghiệm, số giao điểm của đồ thi

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Đặt chung \(z=a+bi(a,b\in\mathbb{R})\)

Câu a)

\(2z^2+5|z|-3=0\Leftrightarrow 2(a^2-b^2+2abi)+5\sqrt{a^2+b^2}-3=0\)

\(\Rightarrow \left\{\begin{matrix} 4ab=0(1)\\ 2(a^2-b^2)+5\sqrt{a^2+b^2}-3=0(2)\end{matrix}\right.\)

Từ \((1)\Rightarrow \) \(a=0\) hoặc \(b=0\)

Nếu \(a=0\) thì từ \((2)\Rightarrow -2b^2+5|b|-3=0 \)

Xét \(b\geq 0,b<0\rightarrow \) \(\left[{}\begin{matrix}b=\dfrac{\pm3}{2}\\b=\pm1\end{matrix}\right.\)

Nếu \(b=0\) thì từ \((2)\Rightarrow 2a^2+5|a|-3=0\)

Xét \(a\geq 0,a<0\) thu được \(a=\pm\frac{1}{2}\)

Vậy \(z=\left \{\pm\frac{3i}{2};\pm i;\pm \frac{1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

b) PT tương đương

\((a+bi)^2-4(a-bi)-11=0\Leftrightarrow a^2-b^2+2abi-4a+4bi-11=0\)

\(\Rightarrow \left\{\begin{matrix} a^2-b^2-4a-11=0(1)\\ 2ab+4b=0\rightarrow b(a+2)=0\end{matrix}\right.\)

Nếu \(b=0\) thay vào \((1)\Rightarrow a^2-4a-11=0\Leftrightarrow a=2\pm \sqrt{15}\)

Nếu \(a=-2\) thì \((2)\Rightarrow 1-b^2=0\rightarrow b=\pm 1\)

Vậy \(z\in\left \{2\pm \sqrt{15},-2\pm i\right\}\)