![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đúng
b) Đúng
c) Sai vì có rất nhiều đường thẳng cùng song song với đường thẳng a.
d) Sai vì qua điểm M nằm ngoài đường thẳng a chỉ có duy nhất một đường thẳng song song với a.
P/s: Liệu đây có phải câu trả lời bạn cần?
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ban oi
ban danh " bai 27/28/29/30 sgk 7 tap 1trang ..." tren google
tren loigiaihay no co giai day!!!
đại lượng y là hàm số của đại lượng xvới y thuộc sự biến đổi của x
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có 4x=3y => x/3=y/4 => x/9=y/12(1)
5y=3z => y/3=z/5 => y/12=z/20(2)
Từ (1) và (2) => x/9=y/12=z/20
=> 2x/18=3y/36=z/20
=> 2x/18=3y/36=z/20=(2x-3y+x)/(18-36+20)
= 6/2=3
sau đó bạn tự tính x,y,z nha. ủng hộ nhé
ta có;\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(5y=3z\Rightarrow\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
suy ra\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{-2}=-3\)
ta có;x=-3.9=-27
y=-3.12=-36
z=-3.20=-60
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}=DTSBN\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)(dpcm)
Theo bài ra ta có: \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(b.k+d.k\right).\left(b-d\right)\\\left(b.k-d.k\right).\left(b+d\right)\end{cases}}\)Thay a = b.k, c = d.k
\(\Rightarrow\hept{\begin{cases}b^2k-bkd+bkd-d^2k\\b^2k+bkd-bkd-d^2k\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b^2k-d^2k\\b^2k-d^2k\end{cases}}\)
Đến đây thì đã chứng minh được rồi, còn nói suy ra hay vậy thì mình chưa biết, tự trình bày theo cách của bạn nhé =)))
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\left|x-\frac{2}{5}\right|\ge0;\left|2y+3\right|\ge0;\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{5}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{5};y=-\frac{3}{2};z=2\)
Ta có :
\(\left|x-\frac{2}{5}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
Vì \(\begin{cases}\left|x-\frac{2}{5}\right|\ge0\\\left|2y+3\right|\ge0\\\left(z-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+3=0\\z-2=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy .................
![](https://rs.olm.vn/images/avt/0.png?1311)