Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + 34 + ... + 320
3A = 32 + 33 + 34 + 35 + ... + 321
3A - A = (32 + 33 + 34 + 35 + ... + 321) - (3 + 32 + 33 + 34 + ... + 320)
2A = 321 - 3
A = \(\frac{3^{21}-3}{2}\)
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(\Rightarrow3A+A=1-\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow4A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{100}}\right)\div4\)
tính tổng á :
\(A=3+3^2+3^3+3^4+...+3^{20}.\)
\(\Rightarrow3A=3^2+3^3+3^4+...3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+..+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\frac{3^{21}-1}{2}\)
1/1+(-2)+3+(-4)+.....+19+(-20)
=1-2+3-4+.....+19-20
=(1+3+.....+19)-(2+4+.....+20)
={(19+1).[(19-1):2+1]:2}-{(20+2).[(20-2):2+1]:2}
={20.10:2}-{22.10:2}
=10:2.(20-22)
=5.(-2)
=-10
\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.5-3^4.3^2}{3^4.13+3^4.1}\)
\(=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}\)
\(=\frac{5-9}{13+1}\)
\(=\frac{-4}{14}=\frac{-2}{7}\)
1.3.5...39/21.22.23...40=(1.3.5...39)(2.4.6...40)/(21.22...40)(2.4.6...40)
=1.2.3.4...40/21.22...40(1.2.3...40)2^20
=1/2^20
1) [1+(-2)]+[3+(-4)]+...+ [19+(-20)]
=(-1)+ (-1)+ ...+ (-1)
= -10
2) (1-2)+(3-4)+... +(99-100)
= (-1)+ (-1)+... + (-1)
= -50
1) =[1+(-2)]+[3+(-4)]+....+[19+9-20)]=-1+(-1)+....+(-1)=10 2) =(1-2)+(3-4)+....+(99-100)=-1+(-1)+...+(-1)=50
A = 1+3+32+33+....+320
3A = 3+32+33+34+.....+321
2A = 3A - A = 321 - 1
=> A = \(\frac{3^{21}-1}{2}\)