Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB=AC(do tam giác ABC cân tại A)
BM=CN(gt)
=>AM=AN
Tam giác AMN có AM=AN(cmt)
=> Tam giác AMN cân tại A
=> góc N= (180độ-góc A)/2(hq) (1)
Tam giác ABC cân tại A(gt)=> góc B= (180độ-góc A)/2(hq) (2)
(1);(2)=> góc B=góc N
Xét tam giác BMK và tam giác CNK có:
KM=KN(do K là trung điểm MN)
góc B=góc N(cmt)
BM=CN(gt)
=> Tam giác BMK= tam giác CNK(cgc)
=> góc MKB= góc CKN(2 góc tương ứng), mà 2 góc này ở vị trí đối đỉnh
=> B.K.C thẳng hàng(đpcm)
tk nha bạn
thank you bạn
(^_^)
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM = góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
A B C M D E N
E là giao điểm của My và BC
My // CN => ME // AC
=> ^MEB = ^ACB ( đồng vị ) mà ^ACB = ^ABC ( \(\Delta\)ABC cân tại A )
=> ^MEB = ^ABC hay ^MEB = MBE (1)
a) Xét \(\Delta\)DMC và \(\Delta\)NCM có:
MC chung
^DMC = ^NCM ( so le trong )
^DCM = ^NMC ( so le trong )
=> \(\Delta\)DMC = \(\Delta\)NCM => DM = CN (2)
Mặt khác: MB = CN (3)
Từ (2) ; (3) => DM = MB => \(\Delta\)BMD cân (4)
b ) (4) => ^MDB = ^MBD (5)
(5) ; (1) => ^MDB + ^MEB = ^MBD + ^MBE
=> 180 - ^DBE = ^DBE
=> ^DBE = 90 độ
=> \(\Delta\)DBC vuông tại B có DC là cạnh huyền
=> BC < CD