\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)

Bài này bình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)

ĐKXĐ: x >= -1

Đặt x -2 = a; \(\sqrt{x+1}=b\)

Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)

=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)

(1) => \(\sqrt{a^2+8b^2}=2a+b\)

   <=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\) 

   <=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)

   <=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)

 TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)

<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)

<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)

TH2: 3a+7b=0

Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!

P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!

7 tháng 8 2021

chim mày to thế

NM
7 tháng 8 2021

điều kiện: \(x\ge\frac{1}{2}\)

ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)

\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)

\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)

TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)

TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)

( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)

10 tháng 8 2021

=1 nha

24 tháng 9 2017

1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\)

\(\Leftrightarrow\sqrt{x^2+9x-1}+x\sqrt{11-3x}=23+x\)

\(\Rightarrow x=5\)

Vì mình giải bằng máy casio nên không thể giải đầy đủ, nhưng kết quả đó đúng đấy

24 tháng 9 2017

2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=1-\frac{1}{2}\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=\frac{1}{2}\)

\(\Rightarrow x=5\)

Phương trình có nghiệm là 5.

Ps: Giải bằng máy casio fx-570VN PLUS , sai thì thôi nhé!

29 tháng 8 2017

\(2\left(x-2\right)\left(\sqrt[3]{4x-4}+\sqrt{2x-2}\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\left(\sqrt[3]{4x-4}-2\right)+\left(\sqrt{2x-2}-2\right)\right]+8\left(x-2\right)=3x-1\)

\(\Leftrightarrow2\left(x-2\right)\left[\frac{4x-12}{\sqrt[3]{\left(4x-4\right)^2}+2\sqrt[3]{4x-4}+4}+\frac{2x-6}{\sqrt{2x-2}+2}\right]+\left(5x-15=0\right)\)

\(\left(x-3\right)\left[\frac{8\left(x-2\right)}{...}+\frac{4\left(x-2\right)}{...}+5\right]=0\Leftrightarrow x=3.\)

26 tháng 8 2017

Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có

                        .

Cộng hai về với -2mV. Ta có

                         - 2mV +  =  - 2mV + 

hay                  .

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

                       

Do đó                m - V = V - m

Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).

Hướng dẫn giải:

Phép chứng minh sai ở chỗ: sau khi lấy căn bậc hai mỗi vế của đẳng thức . Ta được kết quả │m - V│ = │V - m│ chứ không thể có m - V = V - m.

26 tháng 8 2017

là sao v bạn

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

10 tháng 11 2019

Hjhj mình vừa giải trên F

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

7 tháng 8 2015

Hình như cần sửa thành \(\ge\)mới đúng

\(2x^2+xy+2y^2=\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}.\frac{1}{2}\left(x+y\right)^2=\frac{5}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Vậy ta có đpcm.

22 tháng 8 2016

a. Để \(\frac{\sqrt{x-3}}{2x+1}\)có nghĩa thì 2x+1 \(\ne\)0

                                       \(\Leftrightarrow\)2x    \(\ne\)-1

                                        \(\Leftrightarrow\)x    \(\ne\)\(\frac{-1}{2}\)

22 tháng 8 2016

b. Để \(\frac{\sqrt{1-2x}}{x^2-6x+9}\) có nghĩa thì x2-6x+9\(\ne\)0

                                              \(\Leftrightarrow\)(x-3)\(\ne\)0

                                              \(\Leftrightarrow\)x-3   \(\ne\)0

                                              \(\Leftrightarrow\)x      \(\ne\)3