Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái đề nó...
Thôi, làm đúng hay sai thì bạn thông cảm nha ( trình độ kém ) :D
a) \(\Delta AOH-\Delta HBO\)có :
\(OA=OB\left(gt\right)\)
\(\widehat{AOH}=\widehat{HBO}\left(gt\right)\)
\(OH:\)cạnh chung
\(\Rightarrow\Delta OAH=\Delta OBH\)(c.g.c)
\(\Rightarrow AH=HB\)( cạnh tương ứng )
\(\Rightarrow\)H là trung điểm của AB
b) Hiz, không chắc chắn lắm
Vì \(\Delta AOC-\Delta OCB\) có :
\(OA=OB\left(gt\right)\)
\(\widehat{OAC}=\widehat{OCB}\left(gt\right)\)
\(OH:\)cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACO}=\widehat{BCO}\)( cạnh tương ứng )
@ Thùy Phạm@ Sai đề rồi kìa em
Nếu xOy là góc bẹt thì đường vuông góc với Ot ko thể cắt Ox và Oy được. :)
Bạn tự vẽ hình nhé
a) xét tam giác AOH và tam giác BOH có :
OH là cạnh chung
góc AOH = góc BOH (OT là tia phân giác của góc O)
góc AHO =góc BHO (=90 độ )
suy ra : tam giác AOH = tam giác BOH (g.c.g)
suy ra : OA =OB (hai cạnh tương ứng )
b) xét tam giác AOC và tam giác BOC có
OC là cạnh chung
OA=OB (theo câu a)
góc AOC =góc BOC (OT là tia phân giác của góc O)
suy ra : tam giác AOC=tam giác BOC ( c.g.c)
suy ra : CA = CB ( hai cạnh tương ứng )
suy ra : góc OAC =góc OBC (hai cạnh tương ứng )
vậy .....bạn tự kết luận nhé
A B C H O x y t 1 2
a)
xét \(\Delta AHO\) và \(\Delta BHO\) có:
OH(chung)
\(\widehat{AHO}=\widehat{BHO}=90^o\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta AHO=\Delta BHO\left(g.c.g\right)\)
=> OA=OB
b)
xét \(\Delta ACO\) và \(\Delta BCO\) có:
OA=OB(theo câu a)
\(\widehat{O_1}=\widehat{O_2}\)(gt)
OC(chung)
=>\(\Delta ACO=\Delta ABO\left(c.g.c\right)\)
=>\(\begin{cases}\widehat{OAC}=\widehat{OBC}\\CA=CB\end{cases}\)
Đề bài hơi sai, mình sửa lại: Cho góc xOy khác góc bẹt, nhé
Ta có hình vẽ:
a/ Xét tam giác OAH và tam giác OBH có
OH: cạnh chung
\(\widehat{AOH}\)=\(\widehat{BOH}\) (GT)
\(\widehat{AHO}\)=\(\widehat{BHO}\) = 900 (GT)
Vậy tam giác OAH = tam giác OBH (g.c.g)
=> OA = OB (2 cạnh tương ứng)
b/ Xét tam giác OAC và tam giác OBC có:
OC: cạnh chung
OA = OB (câu a)
\(\widehat{COA}\)= \(\widehat{COB}\) (GT)
Vậy tam giác OAC = tam giác OBC (c.g.c)
=> CA = CB (2 cạnh tương ứng)
=> \(\widehat{OAC}\) = \(\widehat{OBC}\) (2 góc tương ứng) (đpcm)
a) ∆AOH và ∆BOH có:=(gt)
OH là cạnh chung
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA=OB(cmt)
=(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(g.c.g)
Suy ra: CA=CB(cạnh tương ứng)
= ( góc tương ứng).
ΔAOC và ΔBOC có:
OA = OB (cmt)
∠ AOC = ∠ BOC (vì Ot là tia phân giác góc xOy)
OC cạnh chung
⇒ ΔAOC = ΔBOC (c.g.c)
⇒ CA = CB (hai cạnh tương ứng)
∠ OAC = ∠ OBC ( hai góc tương ứng).