Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
a) Góc xAK kề bù với góc 115 độ nên góc xAK = 650
Vì Ky song song với Ax nên góc AKy = xAk = 650 ( so le trong )
b) Vì Ky song song với Mz nên zMK + yKM = 1800 ( trong cùng phía ) => góc yKM = 350
=> góc AKM = AKy + yKM = 550 + 350 = 900 hay AK vuông góc với MK
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
a) \(3\dfrac{1}{4}=\dfrac{2}{3}:\left(\dfrac{-x}{2}\right)\Leftrightarrow\dfrac{13}{4}=\dfrac{2}{3}.\dfrac{-2}{x}\Leftrightarrow\dfrac{-2}{x}=\dfrac{39}{8}\Leftrightarrow x=-\dfrac{16}{39}\)
b) \(1-2\left(x+\dfrac{1}{3}\right)=\left|-\dfrac{2}{3}+\dfrac{1}{5}\right|\Leftrightarrow1-2x-\dfrac{2}{3}=\dfrac{7}{15}\Leftrightarrow2x=-\dfrac{2}{15}\Leftrightarrow x=-\dfrac{1}{15}\)
c) \(\left(2x-1\right)\left(\dfrac{2}{5}-\dfrac{1}{3}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\dfrac{2}{5}-\dfrac{1}{3}x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\dfrac{1}{3}x=\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{6}{5}\end{matrix}\right.\)
d) \(-4\dfrac{3}{5}.2\dfrac{4}{23}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\Leftrightarrow-10\le x\le-\dfrac{13}{7}\Leftrightarrow x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1\right\}\)(do \(x\in Z\))
Bài 2:
c: Ta có: \(\left(2x-1\right)\left(\dfrac{2}{5}-\dfrac{1}{3}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\dfrac{2}{5}-\dfrac{1}{3}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\\dfrac{1}{3}x=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{6}{5}\end{matrix}\right.\)