K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: 

Ta có: \(A=x^2+4x+y^2-5y+20\)

\(=x^2+4x+4+y^2-5y+\dfrac{25}{4}+\dfrac{39}{4}\)

\(=\left(x+2\right)^2+\left(y-\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{5}{2}\)

24 tháng 8 2017

Đặt \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=k\)

=> \(\left\{{}\begin{matrix}x-1=2k\\y-2=3k\\z-3=4k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=3k+2\\z=4k+3\end{matrix}\right.\)

Do: x-2y+3z = 14

<=> 2k+1 - 2(3k+2) + 3(4k+3) = 14

<=> 2k+1 - 6k-4 + 12k+9 = 14

<=> 8k + 6 = 14

<=> 8k = 8

<=> k = 1

<=> \(\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)

24 tháng 8 2017

giúp mik với ạkhocroi

12 tháng 3 2017

thiếu đề

11 tháng 3 2017

a)Ta thấy: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow2009+\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\dfrac{1}{2009+\left(x+1\right)^2}\le\dfrac{1}{2009}\forall x\)

\(\Rightarrow\dfrac{2009}{2009+\left(x+1\right)^2}\le\dfrac{2009}{2009}=1\forall x\)

\(\Rightarrow A\le1\)

Đẳng thức xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\) thì \(A_{Max}=1\)

b)Ta thấy: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow1-\left(2x-1\right)^2\le1\forall x\)

\(\Rightarrow B\le1\)

Đẳng thức xảy ra khi \(-\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy với \(x=\dfrac{1}{2}\) thì \(B_{Max}=1\)

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )

17 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Thay \(a=10k\)\(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :

\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

Vậy \(A=24\)

17 tháng 2 2017

Cảm ơn bạn nha!

16 tháng 2 2017

Ta có:

\(A+B=11\left(A-B\right)\)

\(\Rightarrow A+B=11A-11B\)

\(\Rightarrow\) B+11B=11A-A

Suy ra : 12B=10A

\(\Rightarrow\frac{A}{B}=\frac{10}{12}=\frac{6}{5}\)

16 tháng 2 2017

mình tính ra 6/5 ấy, ko chắc là đúng nha !

21 tháng 2 2017

Ta có :

\(S=1.2+2.3+...+49.50\)

\(\Leftrightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+49.50.\left(51-48\right)\)

\(\Leftrightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50\)

\(\Leftrightarrow3S=49.50.51\)

\(\Leftrightarrow S=\frac{49.50.51}{3}=41650\)

21 tháng 2 2017

S=1 . 2 + 2.3+3.4+.....+49.100

3S=1.2.3+2.3.3+3.4.3+....+49.50.3

3S=1.2.3+2.3.(4-1)+3.4(5-2)+....+49.50(51-48)

3S=1.2.3-2.3.4+2.3.4-2.3.1+......+48.49.50+49.50.51

3S=49.50.51

S=49.50.51 / 3

S=41650