Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/giai-phuong-trinh-x-1-x-22-x-1-x-4-32x-4-x-42-0-1
chỉ tiềm thấy cái này thôi ~ vì mk k thể giải đc nên nhờ mạng nên thông cảm cho nha
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
(x+9)(x-9)+(x+8)(x-8)+(x+7)(x-7)+(x+6)(x-6)+(x+5)(x-5)+(x+4)(x-4)+(x+3)(x-3)+(x+2)(x-2)+(x+1)(x-1)
=x2-81+x2-64+x2-49+x2-36+x2-25+x2-16+x2-9+x2-4+x2-1
=9x2-285
( x+2)(x+5)(x+4)(x+3) = 24
<=> (x2 + 5x + 2x + 10)( x2 + 3x+4x+12 ) = 24
<=> ( x2 +7x+10)(x2+7x+12) = 24
Đặt x2 + 7x = t
Thay t vào phương trình , ta có
( t + 10)(t+12) = 24
<=> t2 + 12t + 10t + 120 - 24 = 0
<=> t2 + 22t + 96 = 0
<=> t2 + 6t + 16t + 96 = 0
<=> t( t+6)+16(t+6) = 0
<=> (t+16)(t+6) = 0
=> t+ 16 = 0 => t= -16
hoặc t+6=0 => t= - 6
rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6
x là tất cả các giá trị tìm được
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)
3\(\left(x-4\right)\)+\(\left(x-4\right)\)2=0
<=> \(\left(x-4\right)\)\(\left(x-4+3\right)\)=0
=>\(\left(x-4\right)\)=0 hoặc \(\left(x-4+3\right)\)=0
TH1 x-4=0
<=> x=4
TH2 x-4+3=0
<=> x=1
vậy nghiệm của pt là x=1 và x=4