Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............
nhân chéo 2 vế sẽ thành hpt đẳng cấp
\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)
\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)
\(\Leftrightarrow16x^2+14xy+3y^2=0\)
\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)
a.
\(x^2-3y^2+2xy-x+5y-2=0\)
\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)
\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)
Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)
Bạn tự giải nốt
b.
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)
\(\Rightarrow x+y=11\Rightarrow y=11-x\)
Thay vào pt đầu:
\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)
Bạn tự giải nốt
Bình phương trình đầu trừ phương trình thứ hai cho ta được nhân tử (x - 1)xy(2y + 2x - 1) = 0
P/s: Đến đây là dễ rồi, tự làm nốt nhé bn!
\(\left\{{}\begin{matrix}x^2+y^2=2xy+x-y+2\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2xy-x+y-2=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2-\left(x-y\right)-2=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)\left(x-y-2\right)=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=x+1\\x=y+2\end{matrix}\right.\\2x^2+3y^2=21\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=x+1\\2x^2+3\left(x+1\right)^2=21\end{matrix}\right.\Leftrightarrow...\)
TH2: \(\left\{{}\begin{matrix}x=y+2\\2\left(y+2\right)^2+3y^2=21\end{matrix}\right.\Leftrightarrow...\)