Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
Bài 1:
Lấy PT $(1)$ trừ PT $(2)$ ta có:
\(x^2-y^2=3y-3x\)
\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)
$\Rightarrow x-y=0$ hoặc $x+y+3=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:
\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)
$\Rightarrow x=1$ hoặc $x=2$
Tương ứng ta thu được $y=1$ hoặc $y=2$
Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:
\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)
Vậy..........
Bài 2:
Lấy PT(1) trừ PT(2) ta có:
\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)
\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)
\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)
\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)
Nếu $x=y$. Thay vào PT (1) có:
\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)
Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$
Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$
$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$
$\Rightarrow y=\mp \sqrt{2}$
Vậy........
a.
\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)
\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)
\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)
\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)
\(\Leftrightarrow5x^2+20x-385=0\)
\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)
d.
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)
\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)
\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=\frac{1}{5}\left(1\right)\\8x^2+6x+6xy+2y=\frac{114}{25}\end{cases}}\)
\(\Leftrightarrow9x^2+6x+6xy+2y+y^2+1=\frac{114}{25}+\frac{1}{5}+1\)
\(\Leftrightarrow\left(3x\right)^2+6x\left(y+1\right)+\left(y+1\right)^2=\frac{144}{25}\)\(\Leftrightarrow\left(3x+y+1\right)^2=\frac{144}{25}\)
=>\(\hept{\begin{cases}3x+y+1=\frac{12}{5}\\3x+y+1=-\frac{12}{5}\end{cases}}\)\(\hept{\begin{cases}3x+y=\frac{7}{5}\\3x+y=-\frac{17}{5}\end{cases}}\)\(\hept{\begin{cases}y=\frac{7}{5}-3x\left(2\right)\\y=-\frac{17}{5}-3x\left(3\right)\end{cases}}\)
Thay (2) vào (1) ta có:\(x^2+\left(\frac{7}{5}-3x\right)^2=\frac{1}{5}\)\(\Rightarrow x^2+\frac{49}{25}-8,4x+9x^2-\frac{1}{5}=0\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{25}\\x=0,4\end{cases}\Rightarrow\hept{\begin{cases}y=5,68\\y=6,6\end{cases}}}\)
Thay (3) vào (1) ta giải được (LƯỜI GIẢI) sorry nha :))
P/s:Chỉ khó lúc biến đổi đầu thôi, còn lại bạn tự giải nha
Ai cha!!! Giải y sai rồi lúc cuối sửa lại dùm mình:: \(\hept{\begin{cases}y=\frac{2}{25}\\y=0,4\end{cases}}\)
Vậy đó, mình thích biến đổi hơn, Giải mấy cái dễ thì hay sai linh tinh lắm