Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 bạn có cho đề sai ko :
bạn có thể kham khảo bài ;
https://olm.vn/hoi-dap/detail/203671433762.html
Đặt \(u=\frac{1}{x+1}\Rightarrow x=\frac{1}{u}-1;v=\frac{1}{y-2}\Rightarrow y=\frac{1}{v}+2\)
HPT trở thành: \(\int^{-\frac{1}{uv}=15}_{15.\left(u+v\right)=2}\Leftrightarrow\int^{uv=-\frac{1}{15}}_{15\left(u+v\right)=2}\Leftrightarrow\int^{u=-\frac{1}{15v}}_{15\left(u+v\right)=2}\)
tự giải típ đi mé :D
Đặt u=1/x+1 ; v=1/y-2
.............................................
\(pt\left(1\right)\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^4\right)=0\)
sếp cho em hỏi làm thế nào để phân tích đa thức bậc cao thành nhân tử với Plz
1> lần lượt nhân 3 và 2 vào 2 vế của mỗi phương trình ta được :
6x+9y=-6 (1) và 6x-4y=-6 (2)
trừ 1 cho 2 vế theo vế ta được
13y=0---> y=0--->x=-1
phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)⇔\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)
đoạn sau bạn tự giải nha
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
i don not the math
\(\Leftrightarrow\int^{xy+x^2-4=-6}_{y^2+xy=-1}\Rightarrow\int^{xy+x^2-4=-6}_{3y^2=-1}\)
\(\Leftrightarrow\int^{xy+x^2-\left(-6\right)-4=0}_{3y^2=-1}\)\(\Rightarrow xy+x^2+2=0\)
=>x=0
tự giải tiếp