K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LG
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
2
TN
31 tháng 3 2016
đề đây à \(\int^{x^2+y^2+xy=37}_{\int^{x^2+z^2+xz=38}_{y^2+z^2+yz=19}}\)
điều kiện xy \(\ge\) 0
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=7\\x^2+y^2+xy=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+y\right)-\sqrt{xy}=7\\\left(x+y\right)^2-xy=133\end{matrix}\right.\)
đặc x + y = a ; xy = b
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a-\sqrt{b}=7\\a^2-b=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\\left(7+\sqrt{b}\right)^2-b=133\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\49+14\sqrt{b}+b-b=133\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\14\sqrt{b}=84\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=7+\sqrt{b}\\\sqrt{b}=6\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=13\\b=36\end{matrix}\right.\)
\(\Rightarrow\) x + y = 13 ; xy = 36
\(\Rightarrow\) x ; y là nghiệm của phương trình : x2 - 13x + 36 = 0
bấm máy ta có : x = 4 ; x = 9
vậy x = 4 ; y = 9 hoặc x = 9 ; y = 4
xy = 36 (tmđk)