\(x^3-5x=y^3-5y\)

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

x^3 - 5x = y^3 - 5y (1)

x^2 + y^4 = 1 (2) 

Từ (1) => \(x^3-y^3-5x+5y=0\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-5\left(x-y\right)=0\)

=> \(\left(x-y\right)\left(x^2+xy+y^2-5\right)=0\)

=> \(x=y\) hoặc \(x^2+xy+y^2=5\)

(+)  thay x = y vào (2) ta có : \(x^4+x^2=1\)

đặt x^2 = t  (ĐK t>= 0 )pt <=> t^2 + t = 1 

giải ra t 

(+) TH2 :\(x^2+xy+y^2=5\) (3)

ta có : \(x^2+y^4=1\Rightarrow0\le x;y\le1\)

=> \(0  (4)

Từ (3) và (4) => pt vo nghiệm 

 

30 tháng 9 2015

Lên mặt làm gì, làm gì lên được -_-

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....

27 tháng 9 2015

ĐK-1<=x ;y <= 3 

(+)  x < y 

=> \(\sqrt{x+1}+\sqrt{3-y}<\sqrt{y+1}+\sqrt{3-x}=m\)

Vô lí 

(+) x > y 

=> \(\sqrt{x+1}+\sqrt{3-y}>\sqrt{y+1}+\sqrt{3-x}=m\)

=> vô lí 

(+)  với  x = y 

=> \(\sqrt{x+1}+\sqrt{3-y}=\sqrt{y+1}+\sqrt{3-x}=m\left(TM\right)\)

Thay x = y vào pt (1) ta có :

\(\sqrt{x+1}+\sqrt{3-x}=m\)

đến đây thì chịu 

27 tháng 9 2015

Ngọc Vĩ vk ck thì đừng khách sáo -_- 

30 tháng 9 2015

Điều kiện xác định của hệ: \(x\ge0,y\ge5.\)

Kí hiệu \(VT,VP\) tương ứng là vế trái và phải của phương trình thứ nhất.

Nếu \(x>y-5\to x+4>y-1,x+2>y-3\to VT>VP.\)
Nếu \(x<\)\(y-5\)  thì tương  tự \(VT<\)\(VP.\)

Vậy \(x=y-5.\)

Thay vào phương trình thứ hai cho ta 

\(\left(y-5\right)^2+y^2+\left(y-5\right)+y=44\Leftrightarrow2y^2-8y-24=0\to y^2-4y-12=0\to\)

\(\to\left(y-6\right)\left(y+2\right)=0\to y=-2,6.\) Vì \(y\ge5\to y=6\to x=1.\)

Vậy nghiệm của hệ là \(\left(x,y\right)=\left(1,6\right).\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
11 tháng 1 2016

\(\int^{\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}y=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+3\sqrt{5}\left(\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)\right)=21}\)

\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{2\sqrt{3}x+15x-15\sqrt{3}+15=21}\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{\left(2\sqrt{3}+15\right)x=6+15\sqrt{3}}\)

\(\Leftrightarrow\int^{y=\sqrt{5}x-\sqrt{5}\left(\sqrt{3}-1\right)}_{x=\frac{6+15\sqrt{3}}{2\sqrt{3}+15}}\Leftrightarrow\int^{y=\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{3}+\sqrt{5}=\sqrt{5}}_{x=\sqrt{3}}\)

Vậy nghiệm của hpt là: \(\int^{x=\sqrt{3}}_{y=\sqrt{5}}\)