\(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Từ x – y = 3 ⇒ x = 3 + y.
Thay x = 3 + y vào phương trình 3x – 4y = 2.
Ta được 3(3 + y) – 4y = 2 ⇔ 9 + 3y – 4y = 2.
⇔ -y = -7 ⇔ y = 7
Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.
Vậy hệ phương trình có nghiệm (10; 7).

24 tháng 12 2018

Tặng nick của bạn cho mình đi!

9 tháng 11 2019

Ta có : x - y = 2 => x=2+y (1)

 Mà 5x-3y=10 (2)

Thay (1) vào (2) ta dc : 5(2+y) - 3y =10

                                 => y = 0

                                 => x =0+2=2

9 tháng 11 2019

\(5x-3y=10\)

\(\Leftrightarrow3\left(x-y\right)+2x=10\)

\(\Leftrightarrow6+2x=10\)

\(\Leftrightarrow x=2\)

31 tháng 10 2018

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

31 tháng 10 2018

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

21 tháng 1 2020

b, \(x^3+3x^2y-4y^3+x-y=0\)

\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)

\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Khi đó pt (2) của hệ trở thành: 

\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)

\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)

19 tháng 10 2017

Ko ai bt thì tôi tự giải. Xem có đúng ko?

Giải: 

Đặt: 

\(\hept{\begin{cases}a=x-1\\b=y-1\end{cases}}\)

Thay thế vào hệ, ta có:

\(\hept{\begin{cases}a+\sqrt{a^2+1}=3^b\\b+\sqrt{b^2+1}=3^a\end{cases}}\)

Vế trừ vế ta có:

\(a+\sqrt{a^2+1}+3^a=b+\sqrt{a^2+1}+3^b\)

Dùng hàm số 

Suy ra: \(a=b\)

19 tháng 10 2017

a=b nha anh k em nha

29 tháng 11 2017

\(\hept{\begin{cases}x^3-5x=y^3-5y\left(1\right)\\x^8+y^4=1\left(2\right)\end{cases}}\)

Từ (2) ta có: \(x^8+y^4=1\)

\(\Rightarrow|x|,|y|\le1\)

\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-5\right)=0\)

Ta có: \(x^2+xy+y^2\le3< 5\)

\(\Rightarrow x=y\)

Thế vô giải tiếp là xong.

29 tháng 11 2017

a) 32 − 16x 36 x − 2 = 16 2 − x 36 x − 2 = − 16 2 − x 36 2 − x = − 16 36 = − 4 9 b) x − 8x 3x − 12x + 12 = x x − 8 3 x − 4x + 4 = x x − 2 x + 2x + 4 3 x − 2 = x x + 2x + 4 3 x − 2 = x + 2x + 4x 3x − 6 c) 3x + 3x 7x + 14x + 7 = 3x x + 1 7 x + 2x + 1 = 3x x + 1 7 x + 1 = 3x 7 x + 1 = 3x 7x + 7 d) x − 10x + 9 x − 5x + 4 = x − x − 9x + 9 x − x − 4x + 4 = x x − 1 − 9 x − 1 x x − 1 − 4 x − 1 = x − 9 x − 1 x − 4 x − 1 = x − 3 x + 3 x − 2 x + 2 e) · x − x + 2x − x + 1 x + x + x + 1 = x − x + x + x − x + 1 x x + 1 + x + 1 = x x − x + 1 + x − x + 1 x + 1 x + 1 = x + 1 x − x + 1 x + 1 x − x + 1 = x + 1 x + 1 = x + 1 x + 2x + 1 ( ) ( ) ( ) ( ) ( ) 2 4 ( 2 ) ( 3 ) ( ) 2 ( ) ( 2 ) ( ) ( 2 ) 3 2 2 2 ( 2 ) ( ) ( ) 2 ( ) ( ) 4 2 4 2 4 2 2 4 2 2 2( 2 ) ( 2 ) 2( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( )( ) ( )( ) 4 3 4 3 2 3 ( ) ( ) 4 3 2 2 ( 3 )( ) 2

k cho mk nha

21 tháng 1 2020

\(a,\hept{\begin{cases}x^2-3y=2\\9y^2-8x=8\end{cases}}\)

\(x^2-3y=2\)

\(y=\frac{1^2-2}{3}\)

\(9-\left(\frac{x^2-2}{3}\right)^2-8x=8\)

\(\Rightarrow x^4-4x^2+4-8x-8=0\)

\(\Rightarrow x^4-4x^2-8x-4=0\)

\(\Rightarrow\left(x^2-2x-2\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{2+2\sqrt{3}}{3}\\y=\frac{2-2\sqrt{3}}{3}\end{cases}}\)

Vậy ................................