\(\left\{{}\begin{matrix}x-y-xy=7\\xy.\left(y-x\right)=12\end{matrix}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 1 2019

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-b=7\\-ab=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=b+7\\ab+12=0\end{matrix}\right.\)

\(\Rightarrow\left(b+7\right)b+12=0\Leftrightarrow b^2+7b+12=0\Rightarrow\left[{}\begin{matrix}b=-3;a=4\\b=-4;a=3\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+4\\xy+3=0\end{matrix}\right.\)

\(\Rightarrow\left(y+4\right)y+3=0\Rightarrow y^2+4y+3=0\Rightarrow\left[{}\begin{matrix}y=-1;x=3\\y=-3;x=1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+3\\xy+4=0\end{matrix}\right.\)

\(\Rightarrow\left(y+3\right)y+4=0\Rightarrow y^2+3y+4=0\) (vô nghiệm)

Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(1;-3\right)\)

17 tháng 1 2019

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) : Hệ trở thành ;

\(\left\{{}\begin{matrix}a-b=7\\ab=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\b^2+7b+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+7\\\left(b+3\right)\left(b+4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\end{matrix}\right.\)

Với \(a=4;b=-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=4\\xy=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left(y+1\right)\left(y+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Với \(a=3;b=-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\xy=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\y^2+3y+4=0\end{matrix}\right.\) ( Vô nghiệm )

Vậy \(\left(x;y\right)=\left(3;-1\right)\) \(\left(x;y\right)=\left(1;-3\right)\)

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:

\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)

Bạn tự bấm máy

NV
26 tháng 7 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)

TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:

\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)

NV
9 tháng 1 2019

\(\left\{{}\begin{matrix}\left(x-y\right)^2+xy=3\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-y\right)^2+3xy=9\left(x-y\right)\\\left(x-y\right)^2+3xy=7\left(x-y\right)^3\end{matrix}\right.\)

\(\Rightarrow7\left(x-y\right)^3-9\left(x-y\right)=-2\left(x-y\right)^2\)

\(\Leftrightarrow7\left(x-y\right)^3+2\left(x-y\right)^2-9\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(7\left(x-y\right)^2+2\left(x-y\right)-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x-y=1\\x-y=\dfrac{-9}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=x-1\\y=x+\dfrac{9}{7}\end{matrix}\right.\)

TH1: \(y=x\) thay vaò pt đầu:

\(x^2-x^2+x^2=3\left(x-x\right)\Rightarrow x^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

TH2: \(y=x-1\) thay vào pt đầu:

\(x^2-x\left(x-1\right)+\left(x-1\right)^2=3\Leftrightarrow x^2-x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-1\Rightarrow y=-2\end{matrix}\right.\)

TH3: \(y=x+\dfrac{9}{7}\):

\(x^2-x\left(x+\dfrac{9}{7}\right)+\left(x+\dfrac{9}{7}\right)^2=\dfrac{-27}{7}\Leftrightarrow x^2+\dfrac{9}{7}x+\dfrac{270}{49}=0\) (vô nghiệm)

Vậy hệ đã cho có 3 cặp nghiệm:

\(\left(x;y\right)=\left(0;0\right);\left(2;1\right);\left(-1;-2\right)\)

24 tháng 11 2017

Đặt \(\left\{{}\begin{matrix}x\left(x+1\right)=a\\y\left(y+1\right)=b\end{matrix}\right.\) thì ta có:

\(\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=6\end{matrix}\right.or\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)

Tới đây thì đơn giải rồi nhé

1 tháng 5 2018

a) \(\left\{{}\begin{matrix}x^2+y^2=10\\2\left(x+y-xy\right)=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2x+2y-2xy\\x+y-2xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=2\left(x+y\right)\\x+y-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2\left(x+y\right)=0\\x+y-xy=10\end{matrix}\right.\)

đặt x+y=t

\(\Leftrightarrow\left\{{}\begin{matrix}t\left(t-2\right)=0\\t-xy=10\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\\xy=10+t\end{matrix}\right.\)

nếu t=0\(\left\{{}\begin{matrix}x+y=0\\xy=10\end{matrix}\right.\) loại
nếu t=2\(\left\{{}\begin{matrix}x+y=2\\xy=10\end{matrix}\right.\)

b)\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=12\\x+y+xy=7\end{matrix}\right.\) đặt a=x+y, b=xy

\(\Leftrightarrow\left\{{}\begin{matrix}ab=12\\a+b=7\end{matrix}\right.\)

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

20 tháng 6 2019

\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)

\(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

20 tháng 6 2019

\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)

Làm nốt nha