Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\\\sqrt{2x+y}=b\end{matrix}\right.\) thì ta có:
\(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\5\left(x-y\right)+5\sqrt{2x+y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\3a^2-8b^2+5b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}a=12\\b=-7\end{matrix}\right.\)(l)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
Giải hệ phương trình sau: $\left\{\begin{matrix} \sqrt{7x+y} + \sqrt{2x+y} = 5 & \\ ... - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học
Trừ pt trên cho dưới ta được:
\(\left\{{}\begin{matrix}\sqrt{7x+y}=x-y+4\\\sqrt{2x+y}=y-x+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7x+y=\left(x-y+4\right)^2\\2x+y=\left(y-x+1\right)^2\end{matrix}\right.\)
Lại trừ trên cho dưới:
\(5x=5\left(2x-2y+3\right)\Leftrightarrow x=2y-3\)
Thay vào pt dưới:
\(2y-3-y+\sqrt{2\left(2y-3\right)+y}=1\)
\(\Leftrightarrow\sqrt{5y-6}=4-y\) (\(y\le4\))
\(\Leftrightarrow5y-6=y^2-8y+16\)
\(\Leftrightarrow y^2-13y+22=0\Rightarrow\left[{}\begin{matrix}y=11>4\left(l\right)\\y=2\Rightarrow x=1\end{matrix}\right.\)
Do giai đoạn biến đổi ban đầu ko có điều kiện nên cần thay nghiệm vào hệ để thử, thấy thoả mãn, vậy nghiệm của hệ là \(\left(x;y\right)=\left(1;2\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x+y\ge1\\x+2y\ge2\\x+4y\ge0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow\frac{\left(2x+y-1\right)-\left(x+2y-2\right)}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)
\(\Leftrightarrow\frac{x-y+1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)\(\Leftrightarrow\left(x-y+1\right)\left(\frac{1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+1\right)=0\)\(\Leftrightarrow x-y+1=0\)
Thế vào pt 2 => x;y
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y-1}=a\ge0\\\sqrt{x+2y-2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x-y+1\)
Phương trình thứ nhất trở thành:
\(a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{2x+y-1}=\sqrt{x+2y-2}\Rightarrow y=x+1\)
Thay xuống pt dưới:
\(4x^2-\left(x+1\right)^2+x+4-\sqrt{3x+1}-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x^2-x+3-\sqrt{3x+1}-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x^2-3x+x+1-\sqrt{3x+1}+x+2-\sqrt{5x+4}=0\)
\(\Leftrightarrow3x\left(x-1\right)+\frac{\left(x+1\right)^2-\left(3x+1\right)}{x+1+\sqrt{3x+1}}+\frac{\left(x+2\right)^2-\left(5x+4\right)}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow3x\left(x-1\right)+\frac{x\left(x-1\right)}{x+1+\sqrt{3x+1}}+\frac{x\left(x-1\right)}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow x\left(x-1\right)\left(3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right)=0\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=a^2\\y=b^2-1\end{matrix}\right.\)
\(\Rightarrow\sqrt{2\left(a^2-b^2+1\right)^2+6\left(b^2-1\right)-2a^2+4}=a+b\)
\(\Leftrightarrow2\left(a^2-b^2+1\right)^2+6b^2-2a^2-2=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2-b^2\right)^2+4\left(a^2-b^2\right)+2+6b^2-2a^2-2=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2-b^2\right)^2+2a^2+2b^2=\left(a+b\right)^2\)
Ta có:
\(VT=2\left(a^2-b^2\right)^2+2a^2+2b^2\ge2a^2+2b^2\ge\left(a+b\right)^2=VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
\(\Leftrightarrow x=y+1\)
Thay vào pt đầu:
\(\sqrt{3-y}+\sqrt{y+8}=y^2+7y+6\)
\(\Leftrightarrow y^2+5y+1+\left(y+2-\sqrt{3-y}\right)+\left(y+3-\sqrt{y+8}\right)=0\)
\(\Leftrightarrow y^2+5y+1+\frac{y^2+5y+1}{y+2+\sqrt{3-y}}+\frac{y^2+5y+1}{y+3+\sqrt{y+8}}=0\)
Làm biếng gõ lại:
Câu hỏi của Đỗ Thị Ánh Nguyệt - Toán lớp 10 | Học trực tuyến