Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-2=0\Rightarrow x^2+y^2=2\) thay vào pt(1) dc:
\(5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow2y^3+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)
\(\Leftrightarrow\left(y-x\right)^2\left(2y-x\right)=0\)Ok....?
*)Cách khác
\(pt\left(1\right)-3y\left(x^2+y^2-2\right)=2\left(xy-1\right)\left(x-2y\right)=0\)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(\hept{\begin{cases}xy+3x-y=15\\x+3y=4\end{cases}}\)
\(\hept{\begin{cases}\left(4-3y\right)y+3\left(4-3y\right)-y=15\\x=4-3y\end{cases}}\)
\(\hept{\begin{cases}4y-3y^2+12-9y-y=15\\x=4-3y\end{cases}}\)
\(\hept{\begin{cases}-6y-3y^2-3=0\\x=4-3y\end{cases}}\)
giải pt là ra thôi bn