Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
PT 1 \(\Leftrightarrow x-y.x^2+xy+y^2+3.x-y-3x^2+y^2-2=0\)
\(\Leftrightarrow x^3-3x^3+3x-1=y^3+3y^3+3y+1\)
\(\Leftrightarrow x-1^3=x+1^3\)
\(\Leftrightarrow x-y-2=0\)
Thay vào PT 2 nhân liên hợp.
PT 1 suy ra \(y=x-2\)thay vào PT 2, ta có:
\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)\(-2\le x\le\frac{22}{3}\)
\(\Leftrightarrow4.\sqrt{x+2}-2+\sqrt{22-3x}-4=x^2-4\)
\(\Leftrightarrow x-2.x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)
TH1:x=2 thay vào (1) suy ra y=0
TH2: f(x)= \(x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)*
ta thấy x=-1 là 1 nghiệm của PT(*)
NHận xét rằng giả xử có số a thoả \(-2\le x\le a\le\frac{22}{3}\)
Ta có: \(\sqrt{x+2}< \sqrt{a+2};\sqrt{22-3x}>\sqrt{22-3a}\)
\(\Rightarrow-\frac{4}{\sqrt{x+2}+2}< -\frac{4}{\sqrt{a+2}+2}\)
\(\frac{3}{\sqrt{22-3x}+4}< \frac{3}{\sqrt{22-3a}+4}\)
Suy ra f(x)<< f(a) suy hàm f(x) đồng biến
suy x=-1 thì f(x)=0
x<-1 thì f(x) <0
x>-1 thì f(x)>0
suy ra x=-1 là nghiệm duy nhất của(*)
thay vào (1) ta có y=-3
P/s: Tôi ko chắc, mới lớp 6 thôi
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)
Lấy (1) trừ (2) :
\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)
Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)
Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)
b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)
Lấy (2 ) -(1) thu được :
\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)
Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)
Vậy ......
\(\hept{\begin{cases}\left(x+y\right)\sqrt{x-y+2}=x+3y+2\\\left(x-y\right)\sqrt{x-y+2}=\left(x+y+1\right)\sqrt{x+y-2}\end{cases}\left(1\right)ĐK:\hept{\begin{cases}x-y\ge-2\\x+y\ge2\end{cases}}}\)
Đặt \(\hept{\begin{cases}a=x+y\left(a\ge2\right)\\b=\sqrt{x-y+2}\left(b\ge0\right)\end{cases}\Rightarrow}\hept{\begin{cases}a=x+y\\b^2-2=x-y\end{cases}}\)
Hệ (1) trở thành:\(\hept{\begin{cases}ab=2a-b^2+4\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-b^2-ab+4=0\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(2-b\right)-\left(b-2\right)\left(b+2\right)=0\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2-b\right)\left(a+b+2\right)=0\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\) hoặc \(\hept{\begin{cases}a+b+2=0\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
TH1: \(\hept{\begin{cases}b=2\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b=2\\\left(a+1\right)\sqrt{a-2}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\\left(a+1\right)^2\left(a-2\right)=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\a^3-3a-18=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\\left(a^3+3a^2+6a\right)-\left(3a^2+9a+18\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\\left(a-3\right)\left(a^2+3a+6\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\a=3\end{cases}}\)( vì \(a^2+3a+6>0\))
\(\Rightarrow\hept{\begin{cases}x+y=3\\\sqrt{x-y+2}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
TH2:\(\hept{\begin{cases}a+b+2=0\\\left(b^2-2\right)b=\left(a+1\right)\sqrt{a-2}\end{cases}}\)
Vì \(a\ge2;b\ge0\)
\(\Rightarrow a+b+2>0\)
\(\Rightarrow\)hệ pt vô nghiệm
Vậy hệ pt có no (x,y) = \(\left(\frac{5}{2};\frac{1}{2}\right)\)