Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng máy tính giải hệ phương trình là ra kết quả x= 2/5 y=-2/5 z =12
e ko chắc lắm vì em ms lớp 8
Cộng 3 vế của hệ pt lại được: \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=9\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\) x+y+z=3 hay x+y+z=-3
ở pt đầu => x(x+y+z)=2=> x= \(\frac{2}{x+y+z}\)mà x+y+z có 2 TH => x = \(\frac{2}{3}\) hay x=\(\frac{-2}{3}\)
Tương tự với 2 pt còn lại, ta có 2 nghiệm :S= { \(\left(\frac{2}{3};1;\frac{4}{3}\right);\left(\frac{-2}{3};-1;\frac{-4}{3}\right)\)}
( Do vế phải của 3 pt đều dương và có \(x^2,y^2,z^2\) đều dương => xy , yz và xz cũng dương => x, y, z phải cùng dấu )
\(\hept{\begin{cases}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2x+2y+2z=22\left(4\right)\\3x+3y+3z=33\left(5\right)\end{cases}}\)
Lấy (4) - (2) được \(3y+z=17\left(6\right)\)
Lấy (5) - (3) được \(y+2z=19\left(7\right)\)
Từ (6) và (7) có hệ \(\hept{\begin{cases}3y+z=17\\y+2z=19\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\3y+6z=57\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y+z=17\\5z=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=9\\z=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\z=8\end{cases}}\)
Thay vào (1) được x + 3 + 8 = 11
<=> x = 0
Vậy ..........
lấy pt(1) + pt(2), ta có
\(3x+2z=16\)(4)
lấy 2.pt(2)+pt(3), ta có
\(7x+3z=24\)(5)
từ (4), (5), ta có hpt sau
\(\hept{\begin{cases}3x+2z=16\\7x+3z=24\end{cases}\Leftrightarrow}\hept{\begin{cases}9x+6z=48\\14x+6z=48\end{cases}}\)
từ 2 vế của 2 pt => x=0 và tính được z=8=>y=3
^_^
\(\left\{{}\begin{matrix}x+y+z=11\\2x-y+z=5\left(4\right)\\3x+2y+z=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+z=11\left(1\right)\\4x-2y+2z=10\left(2\right)\\3x+2y+z=14\left(3\right)\end{matrix}\right.\)
Lấy (4) cộng (1) vế với vế , ta có :
\(3x+2z=16\circledast\)
Lấy (2) cộng (3) vế với vế , ta có :
\(7x+3z=24\oplus\)
Từ \(\circledast;\oplus\) , ta có hpt : \(\left(I\right)\left\{{}\begin{matrix}3x+2z=16\\7x+3z=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+6z=48\\14x+6z=48\end{matrix}\right.\)( vô lý )
=> hpt (I) vô nghiệm
=> hpt đã cho vô nghiệm
ê cu bài phần a nè
(2)<=>X2(1-X3)+y2(1-y3)=0 (3)
từ (1) => 1-x3=y3;1-y3=x3
thay vào (3)ta được :x2.y3+y2.x3=0
<=>x2.y2.(x+y)=0 (tới đây tự lo liệu)
a/ \(\Rightarrow\int^{4x-2y=2}_{-3x+2y=2}\)
Cộng 2 vế ta đc : x = 4
Thay x = 4 vào 2x - y = 1 ta đc:
8 - y = 1
=> y = 7
Vậy x = 4 ; y = 7
b/ \(\Rightarrow\int^{3x+4y=12}_{10x+4y=10}\)
Trừ 2 vế ta đc : 7x = -2 => x = -2/7
Thay x = -2/7 vào 3x + 4y = 12 ta đc :
-6/7 + 4y = 12
=> 4y = 90/7
=> y = 45/14
Vậy x = -2/7 ; y = 45/14
Từ pt (1) và (2)
=> \(y^2-xy=x^2+2x+y^2+2y\Leftrightarrow x^2+xy+2\left(x+y\right)=0\)
<=> \(\left(x+2\right)\left(x+y\right)=0\)
.....
v~~~ xài công đại số thử đi bạn
mk đang xài nk nhưng đang bí tí