\(xy=x+2y+3\)

\(4x^3-y^3=24x^3-45x^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Thep phương pháp đưa về đồng bậc, có:

\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)

\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)

\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0

\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y

Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )

<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.

~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~

11 tháng 11 2018

hpt

24 tháng 12 2019

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)

The vao roi tinh la xong

9 tháng 2 2020

a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .

NV
26 tháng 12 2018

\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
23 tháng 3 2019

Lời giải:

Đặt $x+y=a, xy=b$. Ta có:

\(\left\{\begin{matrix} x+y+xy=5\\ x^2+y^2=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=5\\ (x+y)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=5\\ a^2-2b=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=5-a\\ a^2-2b-5=0\end{matrix}\right.\)

\(\Rightarrow a^2-2(5-a)-5=0\)

\(\Leftrightarrow a^2+2a-15=0\)

\(\Leftrightarrow (a-3)(a+5)=0\Rightarrow \left\{\begin{matrix} a=3\\ a=-5\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b=2\\ b=10\end{matrix}\right.\) (tương ứng)

Nếu $a=x+y=3,b=xy=2$, áp dụng đl Vi-et đảo thì $x,y$ là nghiệm của PT \(X^2-3X+2=0\Rightarrow (x,y)=(2,1); (1,2)\)

Nếu \(a=x+y=-5, b=xy=10\), áp dụng đl Vi-et đảo thì $x,y$ là nghiệm của PT \(X^2+5X+10=0\) (PT này vô nghiệm nên không có $x,y$ thỏa mãn)

Vậy...............

16 tháng 1 2018

\(\hept{\begin{cases}2x=\sqrt{y+3}\left(1\right)\\2y=\sqrt{z+3}\left(2\right)\\2z=\sqrt{x+3}\left(3\right)\end{cases}}\)(*)

Do \(\hept{\begin{cases}\sqrt{y+3}\ge0\\\sqrt{z+3}\ge0\\\sqrt{x+3}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge0\\2y\ge0\\2z\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}}\)

Do 2 vế của các phương trình (1)(2)(3) không âm, bình phương 2 vế của mỗi phương trình ta được hệ phương trình:

\(\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=z+3\\\left(2z\right)^2=x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2=x+y+z+9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2-x-y-z-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left[\left(2x\right)^2-2.2x.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2z\right)^2-2.2z.\frac{1}{4}+\frac{1}{16}\right]+\frac{141}{16}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}=0\left(4\right)\end{cases}}\)

Do \(\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}>0\)

nên phương trình (4) vô nghiệm

=> Phương trình (*) vô nghiệm

8 tháng 4 2018

bạn trên giải sai rồi 

24 tháng 5 2019

tôi mới lớp5

24 tháng 5 2019

i am 11 years old,do you know