Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Thep phương pháp đưa về đồng bậc, có:
\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)
\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)
\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)
\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0
\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y
Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )
<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.
~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~
HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)
The vao roi tinh la xong
a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .
\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
Lời giải:
Đặt $x+y=a, xy=b$. Ta có:
\(\left\{\begin{matrix} x+y+xy=5\\ x^2+y^2=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=5\\ (x+y)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=5\\ a^2-2b=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=5-a\\ a^2-2b-5=0\end{matrix}\right.\)
\(\Rightarrow a^2-2(5-a)-5=0\)
\(\Leftrightarrow a^2+2a-15=0\)
\(\Leftrightarrow (a-3)(a+5)=0\Rightarrow \left\{\begin{matrix} a=3\\ a=-5\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b=2\\ b=10\end{matrix}\right.\) (tương ứng)
Nếu $a=x+y=3,b=xy=2$, áp dụng đl Vi-et đảo thì $x,y$ là nghiệm của PT \(X^2-3X+2=0\Rightarrow (x,y)=(2,1); (1,2)\)
Nếu \(a=x+y=-5, b=xy=10\), áp dụng đl Vi-et đảo thì $x,y$ là nghiệm của PT \(X^2+5X+10=0\) (PT này vô nghiệm nên không có $x,y$ thỏa mãn)
Vậy...............
\(\hept{\begin{cases}2x=\sqrt{y+3}\left(1\right)\\2y=\sqrt{z+3}\left(2\right)\\2z=\sqrt{x+3}\left(3\right)\end{cases}}\)(*)
Do \(\hept{\begin{cases}\sqrt{y+3}\ge0\\\sqrt{z+3}\ge0\\\sqrt{x+3}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge0\\2y\ge0\\2z\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}}\)
Do 2 vế của các phương trình (1)(2)(3) không âm, bình phương 2 vế của mỗi phương trình ta được hệ phương trình:
\(\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=z+3\\\left(2z\right)^2=x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2=x+y+z+9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x\right)^2+\left(2y\right)^2+\left(2z\right)^2-x-y-z-9=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left[\left(2x\right)^2-2.2x.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\frac{1}{16}\right]+\left[\left(2z\right)^2-2.2z.\frac{1}{4}+\frac{1}{16}\right]+\frac{141}{16}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x\right)^2=y+3\\\left(2y\right)^2=y+3\\\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}=0\left(4\right)\end{cases}}\)
Do \(\left(2x+\frac{1}{4}\right)^2+\left(2y+\frac{1}{4}\right)^2+\left(2z+\frac{1}{4}\right)^2+\frac{141}{16}>0\)
nên phương trình (4) vô nghiệm
=> Phương trình (*) vô nghiệm