K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

e chưa đến tầm đó

13 tháng 6 2017

\(4x^3-24x^2+45x-27\)

\(=4x^3-6x^2-18x^2+18x+27x-27\)

\(=\left(4x^3-6x^2\right)+\left(18x-27\right)-\left(18x^2-27x\right)\)

\(=2x^2\left(2x-3\right)+9\left(2x-3\right)-9x\left(2x-3\right)\)

\(=\left(2x-3\right)\left(2x^2+9-9x\right)\)

b)  \(4x^3+6x^2+4x+1\)

\(=\left(4x^3+2x^2\right)+\left(4x^2+2x\right)+\left(2x+1\right)\)

\(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)\)

\(=\left(2x+1\right)\left(2x^2+2x+1\right)\)

TK NKA !!!

2 tháng 3 2018

1) \(x^4-8x^3+11x^2+8x-12=0\)

\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)

Vậy ...

23 tháng 4 2020

* 45x(3 - x) = 15x(x - 3)3

\(\Leftrightarrow\) 45x(3 - x) - 15x(x - 3)3 = 0

\(\Leftrightarrow\) 45x(3 - x) + 15x(3 - x)3 = 0

\(\Leftrightarrow\) 15x(3 - x)[3 + (3 - x)2] = 0

\(\Leftrightarrow\left[{}\begin{matrix}15x=0\\3-x=0\\3+\left(3-x\right)^2=0\end{matrix}\right.\)

Vì 3 + (3 - x)2 > 0 với mọi x

\(\Rightarrow\) 15x = 0 hoặc 3 - x = 0

\(\Leftrightarrow\) x = 0 và x = 3

Vậy S = {0; 3}

* 7x2 + 14x + 7 = 3x2 + 3x

\(\Leftrightarrow\) 7(x2 + 2x + 1) = 3x(x + 1)

\(\Leftrightarrow\) 7(x + 1)2 = 3x(x + 1)

\(\Leftrightarrow\) 7(x + 1)2 - 3x(x + 1) = 0

\(\Leftrightarrow\) (x + 1)[7(x + 1) - 3x] = 0

\(\Leftrightarrow\) (x + 1)(7x + 7 - 3x) = 0

\(\Leftrightarrow\) (x + 1)(4x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-7}{4}\end{matrix}\right.\)

Vậy S = {-1; \(\frac{-7}{4}\)}

* 3x2 - 12x + 12 = x4 - 8x

\(\Leftrightarrow\) 3(x2 - 4x + 4) = x(x3 - 8)

\(\Leftrightarrow\) 3(x - 2)2 = x(x - 2)(x2 + 2x + 4)

\(\Leftrightarrow\) 3(x - 2)2 - x(x - 2)(x2 + 2x + 4) = 0

\(\Leftrightarrow\) (x - 2)[3(x - 2) - x(x2 + 2x + 4)] = 0

\(\Leftrightarrow\) (x - 2)(3x - 6 - x3 - 2x2 - 4x) = 0

\(\Leftrightarrow\) (x - 2)(-x3 - 2x2 - x - 6) = 0

\(\Leftrightarrow\) -1(x - 2)(x3 + 2x2 + x + 6) = 0

\(\Leftrightarrow\) (x - 2)[x(x2 + 2x + 1) + 6] = 0

\(\Leftrightarrow\) (x - 2)[x(x + 1)2 + 6] = 0

Ta có: x(x + 1)2 + 6 = 0

\(\Leftrightarrow\) x(x + 1)2 = -6

Nếu x = -2 thì (x + 1)2 = 3 hay (x + 1)2 + 3 = 0

mà (x + 1)2 + 3 > 0 với mọi x nên x không thỏa mãn giá trị trên

Nếu x = 2 thì (x + 1)2 = -3 (loại vì KTM)

Nếu x = 1 thì (x + 1)2 = -6 (loại vì KTM)

Nếu x = -1 thì (x + 1)2 = 6

Thay x = -1 vào pt (x + 1)2 = 6 ta được:

(-1 + 1)2 = 6

\(\Leftrightarrow\) 0 = 6 (KTM)

Từ đó suy ra phương trình x(x + 1)2 + 6 = 0 vô nghiệm

\(\Rightarrow\) x - 2 = 0

\(\Leftrightarrow\) x = 2

Vậy S = {2}

* y2 - x2 = x3 - 3x2y + 3xy2 - y3

\(\Leftrightarrow\) (y - x)(y + x) = (x - y)3

\(\Leftrightarrow\) (y - x)(y + x) - (x - y)3 = 0

\(\Leftrightarrow\) (y - x)(y + x) + (y - x)3 = 0

\(\Leftrightarrow\) (y - x)[y + x + (y - x)2] = 0

Vì y + x + (y - x)2 > 0 với mọi x

\(\Rightarrow\) y - x = 0

\(\Leftrightarrow\) x = y

Vậy S = {y}

Chúc bn học tốt!!

Bài 1:

a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)

c)Đề sai hoàn toàn

d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)

f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)

g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)

i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)

1: \(=2x^2\left(7x-2\right)\)

2: \(=5y^6\left(y^4+3\right)\)

3: \(=3xy\left(3xy-5x-7y\right)\)

4: \(=\left(x+1\right)\left(3x^2-2\right)\)

5: \(=\left(a+b+c\right)\left(a+b+c-ab-bc-ca-1\right)\)

6: \(=4x^2\left(x-2y\right)+20x\left(x-2y\right)\)

\(=4x\left(x-2y\right)\left(x+5\right)\)

7: \(=3x^2y\left(a-b+c\right)-2xy\left(a-b+c\right)\)

\(=xy\left(a-b+c\right)\left(3x-2\right)\)

19 tháng 10 2016

a) 2x-5y+4y+2x

=4x+y

Tai x=3 y=-12 thi

4x3+(-12)=12-12=0

b)3x+4y-2x-3y

 

 

19 tháng 10 2016

b)3x+4y-2x-3y

=x+y

Tai x-2; y=-5 thi

2+(-5)=2-5=-3