\(x+y=460\)

0,85x + 0,9 y= 403

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

\(\left\{{}\begin{matrix}x+y=460\\0,85x+0,9y=403\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=460-y\\0,85\left(460-y\right)+0,9y=403\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=460-y\\391-0,85y+0,9y=403\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=460-y\\0,05y=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=460-240\\y=240\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=220\\y=240\end{matrix}\right.\)

 

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

10 tháng 1 2018

a)   Với m = 0 thì ta có hệ:

\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)

Ta thấy ngay phương trình vô nghiệm.

b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)

Với m = 0 : phương trình vô nghiệm.

Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)

Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)

Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)

\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

Vây minS = \(\frac{7}{8}\) khi m = -4.

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).