Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình:\(\hept{\begin{cases}x^2+4yz+2z=0\\x+2xy+2z^2=0\\2xz+y^2+y+1=0\end{cases}}\)
Giải hệ phương trình:\(\hept{\begin{cases}x^2+4yz+2z=0\\x+2xy+2z^2=0\\2xz+y^2+y+1=0\end{cases}}\)
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B
Xét \(pt\left(3\right)\Leftrightarrow2x=-\left(y^2+y+1\right)\)
\(=-\left(y+\frac{1}{2}\right)^2-\frac{3}{4}< 0\)\(\Rightarrow xz< 0\)
Xét \(pt\left(2\right)\Leftrightarrow x\left(2y+1\right)=-2z^2\le0\)
Xét \(pt\left(1\right)\Leftrightarrow2z\left(2y+1\right)=-x^2\le0\)
Nhân theo vê 3 BĐT trên ta có:
\(2xz\left(2y+1\right)^2\ge0\Rightarrow xz\ge0\) (trái với điều trên)
Hay pt vô nghiệm
ta có : \(x^2-y^2-2z+1=0=>3x^2-3y^2-6z+3=0\\ \)
và\(6x-y+z^2-3=0\)
=> \(6x^2-3y^2-2z^2-y-3x^2+3y^2+6z-3-6x+y-z^2+3=0\\ \)
=> \(3x^2-6x+3-\left(3x^2-6z+3\right)=0\\ \)
=>\(3\left(x-1\right)^2-3\left(z-1\right)^2=0\\ \)
=>\(\left(x+z-2\right)\left(x-z\right)=0\)
phần còn lại bạn tự giải nhá
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)