K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
20 tháng 11 2019
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
\(\Leftrightarrow...\)
Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:
\(x^2+2xy+y^2+4x-4y+4=0\)
Hay: \(\left(x-y+2\right)^2=0\)
Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:
\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
Trương đương với: \(x^2+5x+1=0\)
Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).
Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)
Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)