Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{\begin{matrix}\frac{1\cdot3y}{4x\cdot3y}+\frac{5x}{12xy}=\frac{4\cdot4}{3xy\cdot4}\\\frac{3\cdot3y}{4x\cdot3y}-\frac{1\cdot4x}{3y\cdot4x}=\frac{-47x}{12xy}\end{matrix}\right.\)
\(\left\{\begin{matrix}\frac{3y}{12xy}+\frac{5x}{12xy}=\frac{16}{12xy}\\\frac{9y}{12xy}-\frac{4x}{12xy}=\frac{-47x}{12xy}\end{matrix}\right.\)
\(\left\{\begin{matrix}3y+5x=16\\9y-4x=-47x\end{matrix}\right.\)
\(\left\{\begin{matrix}5x+3y=16\\43x+9y=0\end{matrix}\right.\) ( nếu là toán violympic thì đến đây bạn có thể sử dụng MODE 5 bấm 1 rồi nhập vào bảng )
x=\(\frac{-12}{7}\)
y=\(\frac{172}{21}\)
a) ĐK:x\(\ge\dfrac{3}{4}\)
\(3\left(x^2-1\right)+4x=4x\sqrt{4x-3}\Leftrightarrow3x^2-3+4x=4x\sqrt{4x-3}\Leftrightarrow4x-3-4x\sqrt{4x-3}+4x^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x\right)^2-x^2=0\Leftrightarrow\left(\sqrt{4x-3}-2x-x\right)\left(\sqrt{4x-3}-2x+x\right)^2=0\Leftrightarrow\left(\sqrt{4x-3}-3x\right)\left(\sqrt{4x-3}-x\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}-3x=0\\\sqrt{4x-3}-x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{4x-3}=3x\left(x\ge0\right)\\\sqrt{4x-3}=x\left(x\ge0\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}4x-3=9x^2\\4x-3=x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)(*)
Vì 9x2-4x+3>0 nên 9x2-4x+3=0(loại)
(*)\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy S={1;3}
b)
\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\left(1\right)\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\left(2\right)\end{matrix}\right.\)(1)⇔ y3 - 3y2x + 3x2y + 7x3 = 1 - 6x + 12x2 <=> y3 - 3y2x + 3x2y - x3 = 1 - 6x + 12x2 - 8x3 <=> (y - x)3 = (1 - 2x)3 <=> y - x = 1 - 2x <=> y = 1 - x
Thế vào (2)\(\Leftrightarrow\sqrt[3]{4x+1-x+1}+\sqrt{3x+2\left(1-x\right)}=4\Leftrightarrow\sqrt[3]{3x+2}+\sqrt{x+2}=4\)
Đặt a=\(\sqrt[3]{3x+2}\Leftrightarrow a^3=3x+2\)
b=\(\sqrt{x+2}\left(b\ge0\right)\Leftrightarrow b^2=x+2\Leftrightarrow3b^2=3x+6\)
Vậy 3b2-a3=4
Vậy ta sẽ có hệ phương trình \(\left\{{}\begin{matrix}3b^2-a^3=4\\a+b=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3b^2-a^3=4\left(3\right)\\b=4-a\end{matrix}\right.\)
(3)\(\Leftrightarrow3\left(4-a\right)^2-a^3=4\Leftrightarrow a^3-3a^2+24a-44=0\Leftrightarrow\left(a-2\right)\left(a^2-a+22\right)=0\)(*)
Ta có a2-a+22>0
Vậy (*)\(\Leftrightarrow a-2=0\Leftrightarrow a=2\Leftrightarrow b=2\)
Vậy \(\left\{{}\begin{matrix}\sqrt[3]{3x+2}=2\\\sqrt{x+2}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x+2=8\\x+2=4\end{matrix}\right.\)\(\Leftrightarrow x=2\Leftrightarrow y=-1\)
Vậy (x;y)=(2;-1)
\(\left\{{}\begin{matrix}x^2=12y+6\left(1\right)\\2y^2=x-1\left(2\right)\end{matrix}\right.\)
\(\left(2\right):2y^2=x-1\\ \Rightarrow x=1+2y^2\)
Thay \(x=1+y^2\)vào (1), ta được:
\(x^2=12y+6\\ \Rightarrow\left(1+2y^2\right)^2=12y+6\\ \Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1-\sqrt{3}}{2}\\y=\dfrac{1+\sqrt{3}}{2}\end{matrix}\right.\)
Với \(y=\dfrac{1-\sqrt{3}}{2}\Rightarrow x=3-\sqrt{3}\)
Với \(y=\dfrac{1+\sqrt{3}}{2}\Rightarrow x=3+\sqrt{3}\)
Vậy nghiệm hệ phương trình \(\left(3-\sqrt{3};\dfrac{1-\sqrt{3}}{2}\right),\left(3+\sqrt{3};\dfrac{1+\sqrt{3}}{2}\right)\)
1/
\(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\3x-3y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;0\right)\)
2/
\(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=2\\-4x+6y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0x=4\\-4x+6y=2\end{matrix}\right.\)
Vì 0x=4 vô nghiệm \(\Rightarrow-4x+6y=2\) vô nghiệm
Vậy hệ phương trình đã cho vô nghiệm
3/ \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+15y=25\\10x-8y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}23y=23\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\5x-4=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y) = (1;1)
\(\left\{{}\begin{matrix}12x+12y=1\\4x+14y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{12}\\x+\dfrac{7}{2}y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}y=\dfrac{1}{6}\\x+y=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{15}\\x+y=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{60}\\y=\dfrac{1}{15}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm \(x=\dfrac{1}{60},y=\dfrac{1}{15}\)