Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
ĐKXĐ: \(x,y,z\ge0\)
Từ pt đầu tiên, áp dụng BĐT Cauchy: \(1+y\ge2\sqrt{y}\) \(\Rightarrow\sqrt{x}\left(1+y\right)\ge2\sqrt{xy}\)
\(\Rightarrow2y\ge2\sqrt{xy}\Rightarrow\sqrt{y}\ge\sqrt{x}\Rightarrow y\ge x\)
Tương tự ta có \(2z=\sqrt{y}\left(1+z\right)\ge2\sqrt{yz}\Rightarrow z\ge y\)
\(2x=\sqrt{z}\left(1+x\right)\ge2\sqrt{xz}\Rightarrow x\ge z\)
\(\Rightarrow\left\{{}\begin{matrix}y\ge x\\z\ge y\\x\ge z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Thay vào pt đầu ta được:
\(\sqrt{x}\left(1+x\right)=2x\Leftrightarrow2x-\sqrt{x}\left(1+x\right)=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1-x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-x+2\sqrt{x}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-\left(\sqrt{x}-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)
Vậy hệ có 2 bộ nghiệm:
\(\left(x,y,z\right)=\left(0,0,0\right);\left(1,1,1\right)\)
Do \(2x^2=y\left(x^2+1\right)\Rightarrow y\ge0\), tương tự ta có \(x;y;z\ge0\)
- Nhận thấy \(x=y=z=0\) là 1 nghiệm
- Nếu \(x;y;z>0\)
\(y\left(x^2+1\right)\ge y.2x=2xy\Rightarrow2x^2\ge2xy\Rightarrow x\ge y\)
Tương tự ta có \(y\ge z;z\ge x\Rightarrow x=y=z\)
Thay vào pt đầu ta có
\(2x^2=x\left(x^2+1\right)\Leftrightarrow x\left(x^2-2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)
a: Sửa đề:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)
=>x=4; y=3; z=9
Không mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\)
\(\Rightarrow z=3x^3+2x^2+x\le3y^3+2y^2+y\)
\(\Rightarrow z\le x\)
\(\Rightarrow z=x\)
\(\Rightarrow x=y=z\)
\(\Rightarrow x=3y^3+2x^2+x\Rightarrow x^2\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\end{matrix}\right.\)
do vai trò của x, y, z là như nhau nên ta giả sử x>y>z
=>\(2x^{2010}>2y^{2010}\)
=>\(y^6+z^6>z^6+x^6\Leftrightarrow y^6>x^6\) ,mà thím này mâu thuẫn với giả sử => điều giả sử sai
=> x=y=z
ngang đây thì dễ oy nha bn :)
Không đồng tình với bạn, vì bạn chưa xét dựa trên trường hợp trái dấu (VD: x=2, y=-6) nên bước đầu của bạn: sai.
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=b-a\\3x-3y=2b+c\\x+y-2z=c\end{matrix}\right.\) (nhân -1 vào 2 vế pt 1 và cộng pt 2, nhân 2 vào 2 vế pt 2 và cộng pt 3)
\(\Leftrightarrow\left\{{}\begin{matrix}0=a+b+c\\x-y=\dfrac{2b+c}{3}\\x+y-2z=c\end{matrix}\right.\)
- Nếu \(a+b+c\ne0\) hệ vô nghiệm
- Nếu \(a+b+c=0\) hệ có vô số nghiệm