\(\hept{\begin{cases}3x^2y=8-2x^3\\xy^3=2x+6\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

Đây ok chưa

Ko cop

Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)

Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)

Thay về hệ phương trính ta được :

\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Hoàng Phong cop ở vietjjack

Tham khảo bài làm ạ:

TL:

Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)

HT

2 tháng 2 2020

\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)

Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:

\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)

\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)

Từ đây tự tìm nốt nhé

31 tháng 10 2020

V1 <=> \(xy^2+4y^2+8-x^2+2x-4x=0\)

    <=> \(y^2\left(x+4\right)+2\left(x+4\right)-x\left(x+4\right)=0\)

    <=> \(\left(y^2+2-x\right)\left(x+4\right)=0\)

    <=>\(\orbr{\begin{cases}x=y^2+2\\x=-4\end{cases}}\)

 TH1: Thay \(x=y^2+2\)vào V2:

         \(y^2+2+y+3=3\sqrt{2y-1}\)

<=> \(2y^2+\left(2y-1\right)-6\sqrt{2y-1}+9+2=0\)

<=> \(2\left(y^2+1\right)+\left(\sqrt{2y-1}-3\right)^2=0\)

<=> \(\hept{\begin{cases}y^2=-1\left(\text{loại}\right)\\\sqrt{2y-1}=3\end{cases}}\)

<=> 2y - 1 = 9

<=> y = 5

=> \(x=y^2+2=27\)

TH2: Thay x = -4 vào V2, tương tự đc \(\orbr{\begin{cases}y=10-3\sqrt{10}\\y=10+3\sqrt{10}\end{cases}}\)

11 tháng 5 2020

Ta có \(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}\left(I\right)}\)

Ta có \(\left(I\right)\Leftrightarrow\hept{\begin{cases}x^2+\left(y+1\right)^2-x\left(y+1\right)=1\\2x^2=x+y+1\end{cases}}\left(II\right)\)

Đặt t=y+1 ta có hệ

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\2x^3=\left(x+t\right)\left(x^2+t^2-xt\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\x=t\end{cases}\Leftrightarrow}\hept{\begin{cases}x=t=1\\x=t=-1\end{cases}}}\)

Với x=t=1 => y=0

Với x=t=-1 => y=-2

Vậy nghiệm hệ là (1;0);(-1;-2)

11 tháng 5 2020

\(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}xy^2+\left(2x+1\right)=4y\\\left(x^2y^2+2xy+1\right)y-2\left(2x+1\right)=-2y\end{cases}}\)(*)

- Xét y = 0 thay vào hệ (*), ta được hệ phương trình: \(\hept{\begin{cases}2x+1=0\\-2\left(2x+1\right)=0\end{cases}}\Leftrightarrow x=\frac{-1}{2}\)

Suy ra \(\left(\frac{-1}{2};0\right)\)là một nghiệm của hệ.

- Xét \(y\ne0\), hệ (*) tương đương với: \(\hept{\begin{cases}xy+\frac{2x+1}{y}=4\\x^2y^2+2xy+1-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(xy+1\right)+\frac{2x+1}{y}=5\\\left(xy+1\right)^2-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)(**)

Đặt \(a=xy+1;b=\frac{2x+1}{y}\), khi đó hệ (**) trở thành: \(\hept{\begin{cases}a+b=5\\a^2-2b=-2\end{cases}}\)(***)

Giải hệ (***) tìm được \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)hoặc \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)

* Với \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)thì \(\hept{\begin{cases}xy+1=2\\\frac{2x+1}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{3}\right)=1\\y=\frac{2x+1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)

* Với \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)thì \(\hept{\begin{cases}xy+1=-4\\\frac{2x+1}{y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{9}\right)=-5\\y=\frac{2x+1}{9}\end{cases}}\)(vô nghiệm)

Vậy hệ phương trình có 3 nghiệm \(\left(x;y\right)\in\left\{\left(-\frac{1}{2};0\right);\left(1;1\right);\left(-\frac{3}{2};-\frac{2}{3}\right)\right\}\)