![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: x^2+y^2+z^2=xy+3y+2z-4 => x^2+y^2+z^2-xy-3y-2z+4=0
=>x^2-xy+y^2/4 +3y^2/4 -3y+3+z^2-2x+1=0 0
=>(x- y/2)^2 + 3(y/2-1)^2 +(z-1)^2 =0 =>y/2 -1=0 =>y/2= 1 =>y= 2
=>x - y/2=0 => x -1 =0 => x=1
=>z-1=0 => z=1
từ đó ta có x+y+z=4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-4\right)^4+\left(x-2\right)^4=82\)
\(\left(y-1\right)^4+\left(y+1\right)^4=82\\ \)
\(\left(y^4-4y^3+6y^2-4y+1\right)+\left(y^4+4y^3+6y^2+4y+1\right)=82\)
\(2y^4+12y^2+2=82\)
\(z^2+6z-40=0\Rightarrow\orbr{\begin{cases}z=-10\left(loai\right)\\z=4\end{cases}}\)
Z=4=> \(z=4\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-2\Rightarrow x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
t(t+1)=6
=> t=2;-3
+ x2 +x = 2 => x = 1 ; -2 => S =5
+ x2 + x = -3 => loại
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0
Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0
⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0
⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12
Theo Vi-et ta có:
⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12
Dấu "=" xảy ra ⇔m=2 (thỏa mãn).
Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.