Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH y=0 \(\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\z=1\end{matrix}\right.\) nhanguyễn hoàng anh ghi nhầm y=1 rồi
Đề:\(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\). Đề nhớ ghi đủ nha
Áp dụng hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\Leftrightarrow1-3xyz=1-xy-yz-zx\)
\(\Leftrightarrow3xyz=xy+yz+zx\)(1)
Lại có: \(1=x+y+z\)
\(\Rightarrow1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=1+2\left(xy+yz+zx\right)\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)(2)
Từ (1) và (2) ta suy ra: \(3xyz=0\)
\(\Leftrightarrow xyz=0\)
\(\Rightarrow\) x=0 hoặc y=0 hoặc z=0
*Xét x=0, ta có: \(\left\{{}\begin{matrix}y+z=1\left(3\right)\\y^2+z^2=1\\y^3+z^3=1\end{matrix}\right.\)
Từ \(\left(3\right)\Leftrightarrow y^2+z^2+2yz=1\)
\(\Leftrightarrow1+2xy=1\)
\(\Leftrightarrow2xy=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}z=1\\y=1\end{matrix}\right.\)
Tương tự, ta giải các TH kia cũng vậy:
\(y=0\Leftrightarrow\left[{}\begin{matrix}z=0\\x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(z=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Vậy nghiệm của phương trình trên là:
\(\left(x;y;z\right)=\left\{\left(1;0;0\right);\left(0;1;0\right);\left(0;0;1\right)\right\}\)
Áp dụng BĐT AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tiếp tục use AM-GM:
\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
\(\Rightarrow VT=x^4+y^4+z^4\ge3xyz=VP\left(vi`...x+y+z=3\right)\)
Khi \(x=y=z=1\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
Áp dụng BĐT Cô-si,ta có :
x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\); \(y^4+xz\ge2y^2\sqrt{xz}\); \(z^4+xy\ge2z^2\sqrt{xy}\)
\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)
\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z = 1
Áp dụng hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) với \(a=x,b=-y,c=-z\) ta được \(x^3-y^3-z^3-3xyz=\left(x-y-z\right)\left(x^2+y^2+z^2+xy-yz+zx\right)\) Thành thử \(x=y+z\) hoặc \(x^2+y^2+z^2+xy-yz+zx=0.\) Vì \(x,y,z\) là các số nguyên dương nên \(x^2+y^2+z^2+xy-yz+zx>x^2+z^2-xz\ge xz>0.\) Suy ra \(x=y+z\). Vì \(x^2=2\left(y+z\right)\to x^2=2x\to x=2\to y+z=2\to y=z=1.\) (Vì các số \(x,y,z\) nguyên dương).
Vậy \(\left(x,y,z\right)=\left(2,1,1\right).\)