
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A=(\(3\sqrt{3}-2\sqrt{3}+6\)).\(\sqrt{3}-4\sqrt{3}\)
=\(\sqrt{3}\left(3-2+2\sqrt{3}\right)\).\(\sqrt{3}-4\sqrt{3}\)
=3(\(3-2+2\sqrt{3}\))-4\(\sqrt{3}\)
=3+2\(\sqrt{3}\)

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\) (đk: \(x\ge0\))
\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)
\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)
\(\Leftrightarrow2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)
\(\Leftrightarrow x=9\)(tmđk)
vậy nghiệm của phtrinh là x = 9


Đặt \(u=\sqrt{x+5};v=\sqrt{5-x}\left(-5\le x\le5;v\ge0\right)\)
\(\Rightarrow u^2=x+5;v^2=5-x\Rightarrow u^2+v^2=10\)
Ta có hệ phương trình
\(\hept{\begin{cases}u+v=4\\u^2+v^2=10\end{cases}\Leftrightarrow\hept{\begin{cases}u+v=4\\\left(u+v\right)^2-2uv=10\end{cases}\Leftrightarrow}\hept{\begin{cases}u+v=4\\uv=3\end{cases}}}\)
Áp dụng Vi-et có u,v là nghiệm phương trình bậc hai
\(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Ta tìm được nghiệm x=\(\pm4\)
cảm ơn bạn rất nhiều