\(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

\(\hept{\begin{cases}x^2y^2-1=7x+7y\\xy-1=x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2y^2-1=7x+7y\\7xy-7=7x+7y\end{cases}}\)

\(\Rightarrow x^2y^2-1-7xy+7=0\Leftrightarrow x^2y^2-7xy+6=0\)

\(\Leftrightarrow x^2y^2-xy-6xy+6=0\Leftrightarrow xy\left(xy-1\right)-6\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(xy-6\right)=0\Leftrightarrow\orbr{\begin{cases}xy-1=0\\xy-6=0\end{cases}}\)

Tới đây bạn tự giải tiếp nha

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

23 tháng 5 2017

a/

\(\hept{\begin{cases}x^2-3x=2y\\y^2-3y=2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y=x^2-3x\\y^2-3y=2x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y=\frac{x^2-3x}{2}\\y^2-3y=2x\left(1\right)\end{cases}}\)

(1) \(\Leftrightarrow\left(\frac{x^2-3x}{2}\right)^2-3\left(\frac{x^2-3x}{2}\right)=2x\)

\(\Leftrightarrow\frac{x^4-6x^3+9x^2}{2}-\frac{3x^2-9x}{2}=2x\)

\(\Leftrightarrow x^4-6x^3+9x^2-3x^2+9x=4x\)

\(\Leftrightarrow x^4-6x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^3-6x^2+6x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^3-6x^2+6x+5=0\left(2\right)\end{cases}}\)

20 tháng 9 2020

Xin làm ý b 

\(\hept{\begin{cases}x^2-xy+y=1\\y^2-xy+x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-xy=1-y\\y^2-xy=1-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(1-y\right)=1-y\\y\left(1-x\right)=1-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy x = y = 1