Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt \(\frac{a+b}{2}\ge\sqrt{ab}\),dấu "=" xảy ra <=>a=b
\(\sqrt{\left(4x-1\right).1}\le\frac{1+4x-1}{2}=2x\)
Tương tự \(\sqrt{\left(4y-1\right).1}\le\frac{1+4y-1}{2}=2y;\sqrt{\left(4z-1\right).1}\le\frac{1+4z-1}{2}=2z\)
Cộng theo vế:
=>\(2\left(x+y+z\right)\ge\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}< =>x=y=z=\frac{1}{2}\)
Ta có
\(\sqrt{4x-1}\le\frac{1+4x-1}{2}=2x\)
\(\sqrt{4y-1}\le2y\)
\(\sqrt{4z-1}\le2z\)
Cộng vế theo vế ta được
\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\le2\left(x+y+z\right)\)
Theo đề bài ta có khi cộng pt (1), (2), (3) vế theo vế thì được
\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}=2\left(x+y+z\right)\)
Dấu = xảy ra khi x = y = z = \(\frac{1}{2}\)
Câu này với câu ah vừa HD có chung cách, thật ra cái này dặt ẩn phụ là sẽ chuyển về cái kia nhé!
Điều kiện \(x,y,z\ge\frac{1}{4}\)
Cộng các phương trình trong hệ được :
\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Từ đó thay vào yêu cầu đề bài để tính.
Giả sử \(y\ge z\Rightarrow\frac{4x}{1+4x}\ge\frac{4y}{1+4y}\Leftrightarrow1-\frac{1}{1+4x}\ge1-\frac{1}{1+4y}\)
\(\Leftrightarrow\frac{1}{1+4x}\le\frac{1}{1+4y}\Leftrightarrow1+4x\ge1+4y\Leftrightarrow x\ge y\)
\(\Rightarrow\frac{4z}{1+4z}\ge\frac{4x}{1+4x}\).Tương tự:\(z\ge x\).Nên \(x=y=z\).
Thế vào mà giải nhé