\(\left\{{}\begin{matrix}x^2+y^2+4x+4y-1=0\\3x-4y-2=0\end{matrix}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

\(3x=4y+2\Rightarrow x=\frac{4y+2}{3}\)

Thay vào pt trên:

\(\left(\frac{4y+2}{3}\right)^2+y^2+4\left(\frac{4y+2}{3}\right)+4y-1=0\)

\(\Leftrightarrow16y^2+16y+4+9y^2+48y+24+36y-9=0\)

\(\Leftrightarrow25y^2+100y+19=0\Leftrightarrow\left[{}\begin{matrix}y=-\frac{1}{5}\Rightarrow x=\frac{2}{5}\\y=-\frac{19}{5}\Rightarrow x=-\frac{22}{5}\end{matrix}\right.\)

9 tháng 8 2018

1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)

\(\Rightarrow\) phương trình vô nghiệm

NV
16 tháng 9 2020

Trừ vế cho vế:

\(\Rightarrow2x^2-2-2y^2-4y+2x\sqrt{x^2+1}=2\left(y+1\right)\sqrt{y^2+2y+2}\)

\(\Leftrightarrow x^2+x\sqrt{x^2+1}=\left(y+1\right)^2+\left(y+1\right)\sqrt{\left(y+1\right)^2+1}\)

Xét hàm \(f\left(t\right)=t^2+t\sqrt{t^2+1}\)

\(f'\left(t\right)=\frac{\left(\sqrt{t^2+1}+t\right)^2}{\sqrt{t^2+1}}>0\) ;\(\forall t\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow x=y+1\)

Thay xuống pt dưới:

\(\left(y+1\right)^2+2y^2-2\left(y+1\right)+4y-3=0\Leftrightarrow...\)

30 tháng 3 2017

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)