\(\left\{{}\begin{matrix}x^2+3xy^2=6xy-3x-49\\x^2-8xy+y^2=10y-25...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

nhân pt (2) vs 3 sau đó cộng pt (1) vs (2) ta đc

\(\left\{{}\begin{matrix}x^3+3xy^2=-46\\x^3+3xy^2+3x^2-24xy+3y^2=24y-51x-46\end{matrix}\right.\)

bây h ta chú ý tới pt dưới

\(x^3+3xy^2+3x^2-24xy+3y^2-24y+51x+46=0\)

\(\left(x+1\right)\left(x^2+2x+3y^2-24y+49\right)=0\)

\(\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-4\right)^2\right]=0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\x^3+3xy^2=-49\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\)

vậy hệ có 2 nghiệm

18 tháng 8 2018

đm thể loại tự biên tự diễn

15 tháng 1 2019

a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)

Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0);(1;1).

b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)

Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)

\(\Leftrightarrow-2x+9x=2x^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0).

c) Từ 2x-y=5\(\Rightarrow y=2x-5\)

Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:

\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (3;1).

27 tháng 7 2018

\(a.\left\{{}\begin{matrix}3x+y=-2\\-9x-39=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x-36=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\-9x=45\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-2-3x\\x=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=13\end{matrix}\right.\)

\(b.\left\{{}\begin{matrix}x+y=101\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-x+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\-101+y+y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\2y=100\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=101-y\\y=50\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=51\\y=50\end{matrix}\right.\)

\(c.\left\{{}\begin{matrix}x+y=2\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}x+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\1-\dfrac{1}{2}y+y=\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\\dfrac{1}{2}y=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2-y\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

18 tháng 6 2017

\(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy=5\\4xy\left(x+2y\right)+5\left(x+2y\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-4b=5\\4ab+5a=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4b=a^2-5\\a\left(a^2-5\right)+5a=1\end{matrix}\right.\)

\(\Rightarrow a^3=1\)=> a=1 => 4b= 1 -5 =4=> b = -1

=>\(\left\{{}\begin{matrix}x+2y=1\\xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=2\end{matrix}\right.\end{matrix}\right.\)