K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2020

\(\left\{{}\begin{matrix}2x+y=3\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-2x\\3x-\left(3-2x\right)=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3-2x\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

Vậy hpt trên có nghiệm duy nhất là (1;1)

10 tháng 10 2021

\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)

\(\left(\sqrt{3x^2-12x+21}-3\right)+\left(\sqrt{5x^2-20x+24}-2\right)=-2x^2+8x-8\)

\(\frac{3x^2-12x+21-9}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+24-4}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{3x^2-12x+12}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+20}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{\left(x-2\right)\left(3x-6\right)}{\sqrt{3x^2-12x+21}+3}+\frac{\left(x-2\right)\left(5x-10\right)}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\left(x-2\right)\left(\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\right)=0\)

\(\orbr{\begin{cases}x=2\left(TM\right)\\\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\ne0\left(KTM\right)\end{cases}}\)

vậy pt có nghiệm duy nhất là 2

10 tháng 10 2021

Mà bạn ơi, tại sao cái về sau khác 0 được vậy bạn ? Sao mình không đặt (x-2)^2 luôn nhỉ? Dù sao cũng cảm ơn ha!

10 tháng 1 2020

\(\left\{{}\begin{matrix}4x+y=3\\x-y=2\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}4x+y=3\\x=2+y\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}4\left(2+y\right)+y=3\\x=2+y\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}8+4y+y=3\\x=2+y\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}5y=-5\\x=2+y\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}y=-1\\x=2+\left(-1\right)\end{matrix}\right.\)

\(\rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy nghiệm duy nhất của PT (1;-1)

10 tháng 1 2020

\(\left\{{}\begin{matrix}4x+y=3\\x-y=2\end{matrix}\right.\)

từ phương tình (2)thế vào phương trình (1)

<=>\(\left\{{}\begin{matrix}4x+y=3\\x=y+2\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}4\left(y+2\right)+y=3\\x=y+2\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}4y+8+y=3\\x=y+2\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy.........

7 tháng 11 2018

a) ĐK: x>=2

pt <=>\(\sqrt{x+3}+\sqrt{x-2}=5\) (bình phương 2 vế không âm)

<=>\(x+3+x-2+2\sqrt{\left(x+3\right)\left(x-2\right)}=25\) (chuyển vế rút gọn)

<=>\(\sqrt{\left(x+3\right)\left(x-2\right)}=12-x\) 

<=>\(\hept{\begin{cases}12-x\ge0\\x^2+x-6=144-24x+x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\le12\\25x=150\end{cases}}}\Leftrightarrow x=6\)( thỏa mãn điều kiện )

b)( Phương trình đối xứng loại 2, lấy hiệu hai phuowmh trình của hệ)

=> \(x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y-1=0\end{cases}}\)

Với x-y=0 <=> x=ythế vào một trong hai phương trình được một phương trình bậc 2. em tự giải tiếp nhé!

Với x+y-1=0 <=> x=1-y   thế vào  và làm như trên.

14 tháng 12 2018

Em hiểu câu a rồi nhưng câu b em không hiểu lắm cho dù đã học đối xứng loại 2

26 tháng 8 2016

a ) \(\begin{cases}3x-y=5\\5x+2y=23\end{cases}\)

Từ phương trình \(\left(1\right)\) \(\Leftrightarrow y=3x-5\)     \(\left(3\right)\)

Thế \(\left(3\right)\)  vào phương trình \(\left(2\right)\) : \(5x+2\left(3x-5\right)=23\)

\(\Leftrightarrow5x+6x-10=23\Leftrightarrow11x=33\Leftrightarrow x=3\)

Từ đó \(y=3.3-5=4\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(3;4\right)\)

b ) \(\begin{cases}3x+5y=1\\2x-y=-8\end{cases}\)

Từ hệ phương trình \(\left(2\right)\) \(\Leftrightarrow y=3x+8\)

Thế (3) vào (1): \(3x+5\left(2x+8\right)=1\Leftrightarrow3x+10x+40=1\Leftrightarrow13x=-39\)

 \(\Leftrightarrow x=-3\)                                                                      

Từ đó \(y=2\left(-3\right)+8=2\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(-3;2\right)\)

 

1 tháng 3 2020

Bài 1 trước ạ

Trước khi trả lời câu hỏi này mình muốn cung cấp thêm chút kiến thức

HPT \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\)

*Có nghiệm duy nhất( tức là 1 nghiệm)⇔\(\frac{a}{a'}\)\(\frac{b}{b'}\)

*Vô nghệm (Tức không có nghiệm nào)⇔\(\frac{a}{a'}=\frac{b}{b'}\)\(\frac{c}{c'}\)

*Vô số nghiệm⇔\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

Áp dụng điều trên t nhận thấy

a \(\frac{2}{3}\)\(\frac{1}{-1}\)=> HPT có nghiệm duy nhất

b\(\frac{1}{2}\)=\(\frac{2}{4}\)\(\frac{3}{1}\)=> HPT vô nghiệm

Tương tụ vầy c) có nghiệm duy nhất. d có vô số nghiệm

Bài 2

a Thay x=4 và y=3 vào PT ax+4y=5b-10 được 4a+12=5b-10(1)

Tương tự thay vào cái dưới ta được 12+3y=7-4a(2)

Từ (1) và (2) ta có một hpt mới

\(\left\{{}\begin{matrix}4a+12=5b-10\\12+3b=7-4a\end{matrix}\right.\)\(\left\{{}\begin{matrix}4a-5b=-22\\4a+3b=-5\end{matrix}\right.\)\(\left\{{}\begin{matrix}4a-5b=-22\\-8b=-17\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\frac{-91}{32}\\b=\frac{17}{8}\end{matrix}\right.\)

Bài 3

\(\left\{{}\begin{matrix}2x-y=2xy\\5x+3y=4xy\end{matrix}\right.\)\(\left\{{}\begin{matrix}4x-2y=4xy\left(1\right)\\5x+3y=4xy\left(2\right)\end{matrix}\right.\)

Lấy cả hai vế của (1) trừ cho cả hai vế của (2) ta được

-x-5y=0⇔x=-5y. Thay vào (1) ta được

-20y-2y=-20y2

\(20y^2-22y=0\)

⇔y(20y-22)=0

\(\left[{}\begin{matrix}y=0=>x=0\\y=\frac{11}{10}=>x=\frac{-11}{2}\end{matrix}\right.\)

Vậy...