Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Áp dụng bđt \(a^2+b^2+c^2\ge ab+bc+ca\) ta có
\(2x^4+2y^4+2z^4=2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge2\left(xy^2z+x^2yz+xyz^2\right)\)
\(=2xyz\left(x+y+z\right)=2xyz\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)
1/ \(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4x-4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
Thay vào 1 trong 2 pt ban đầu là xong
2/ \(x^2-\left(y+2\right)x-6y^2+11y-3=0\)
\(\Delta=\left(y+2\right)^2-4\left(-6y^2+11y-3\right)\)
\(=25y^2-40y+16=\left(5y-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+2+5y-4}{2}\\x=\frac{y+2-5y+4}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3y-1\\x=-2y+3\end{matrix}\right.\)
Thay vào pt 2 là được
c/ \(S=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(S< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
\(S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(S< 1+2\left(\sqrt{100}-1\right)=19\)
\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)
\(S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải số tự nhiên
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
Do \(2x^2=y\left(x^2+1\right)\Rightarrow y\ge0\), tương tự ta có \(x;y;z\ge0\)
- Nhận thấy \(x=y=z=0\) là 1 nghiệm
- Nếu \(x;y;z>0\)
\(y\left(x^2+1\right)\ge y.2x=2xy\Rightarrow2x^2\ge2xy\Rightarrow x\ge y\)
Tương tự ta có \(y\ge z;z\ge x\Rightarrow x=y=z\)
Thay vào pt đầu ta có
\(2x^2=x\left(x^2+1\right)\Leftrightarrow x\left(x^2-2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)