\(\left\{{}\begin{matrix}x+y+z=12\\ãx+5y+4z=46\\5x+ay+3z=38\end{matrix}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)

b: x+3y=5 và 2x-5y=-1

=>2x+6y=10 và 2x-5y=-1

=>11y=11 và x+3y=5

=>y=1 và x=2

c: 3x-4y=18 và 2x+y=1

=>3x-4y=18 và 8x+4y=4

=>11x=22 và 2x+y=1

=>x=2 và y=1-2*2=-3

 

\(\Leftrightarrow\left\{{}\begin{matrix}10x+50y-30z=360\\10x+20y+20z=195\\10x-2y-2z=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y-3z=36\\30y-50z=165\\52y-28z=280\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{469}{88}\\z=-\dfrac{9}{88}\\x=\dfrac{199}{22}\end{matrix}\right.\)

11 tháng 2 2020

a) Xem lại đề

b) \(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\frac{33-5y}{2}-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}165-25y-6y=10\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31y=155\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=\frac{33-5.5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=4\end{matrix}\right.\)

11 tháng 2 2020

c)\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{x}{2}-\frac{13-5x}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{3x-26+10x}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5.2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)

31 tháng 5 2020

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

31 tháng 5 2020

bạn giải câu g hộ mỉnh đc ko

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)

a)

Từ PT$(2)\Rightarrow y=18-5x$

Thế vào PT$(1)$: $3x-2(18-5x)=5$

$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$

\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)

Vậy.......

b)

PT\((1)\Rightarrow y=2x-8\)

Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)

$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$

$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$

Vậy........

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

c)

HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)

Từ PT$(1)\Rightarrow 12x=9y+6$

Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$

$\Leftrightarrow y=2$

$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$

Vậy.........

d)

HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)

Từ PT$(1)\Rightarrow 10x=65-25y$

Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$

$\Leftrightarrow y=3$

$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$

Vậy........

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn